A comparative analysis of artificial intelligence techniques for carbon emission predictions in the construction industry

2025;
: pp. 401–409
https://doi.org/10.23939/mmc2025.02.401
Received: December 21, 2024
Revised: March 24, 2025
Accepted: April 02, 2025

Mamat R. C., Ramli A., Bawamohiddin A. B.  A comparative analysis of artificial intelligence techniques for carbon emission predictions in the construction industry.  Mathematical Modeling and Computing. Vol. 12, No. 2, pp. 401–409 (2025)     

1
Centre of Green Technology for Sustainable Cities, Department of Civil Engineering, Politeknik Ungku Omar
2
Centre of Research and Innovation Excellence, Politeknik Ungku Omar
3
Department of Information Technology and Telecommunications, Politeknik Ungku Omar

The construction industry significantly contributes to global carbon emissions, necessitating urgent mitigation measures.  This study addresses the challenge of predicting carbon emissions during construction projects using advanced artificial intelligence (AI) techniques.  The performance of two AI models, Random Forests (RF) and Support Vector Machines (SVM), is compared to determine their effectiveness in forecasting emissions based on construction materials, techniques and project scale.  Predictive models were developed using a dataset derived from previous research and real-world construction site data, ensuring accuracy through meticulous pre-processing, including data cleaning, normalization, and feature selection.  The RF and SVM models were trained and tested on this dataset to evaluate their performance.  The results show that the models achieve significant accuracy, and the RF model slightly outperforms the SVM in precision and reliability. This study underscores the potential of AI-driven approaches to improve sustainability in the construction industry.  Insights from the analysis can inform industry stakeholders and policymakers in developing effective carbon reduction strategies, aligning with global efforts to combat climate change.

  1. Manzoor B., Othman I., Durdyev S., Ismail S., Wahab M. H.  Influence of artificial intelligence in civil engineering toward sustainable development-a systematic literature review.  Applied System Innovation.  4 (3), 52 (2021).
  2. Thomas A.  Achieving sustainability in underground construction through innovation.  Proceedings of the Institution of Civil Engineers-Civil Engineering.  173 (5), 5–10 (2019).
  3. Pham A.-D., Ngo N.-T., Truong T. T. H., Huynh N.-T., Truong N.-S.  Predicting energy consumption in multiple buildings using machine learning for improving energy efficiency and sustainability.  Journal of Cleaner Production.  260, 121082 (2020).
  4. Ding Y., Li Y., Zheng H., Mei M., Liu N.  A graph-factor-based random forest model for assessing and predicting carbon emission patterns – Pearl River Delta urban agglomeration.  Journal of Cleaner Production.  469, 143220 (2024).
  5. Hu K., Zhang Q., Feng X., Liu Z., Shao P., Xia M., Ye X.  An interpolation and prediction algorithm for XCO$_2$ based on multi-source time series data.  Remote Sensing.  16 (11), 1907 (2024).
  6. Fang Y., Lu X., Li H.  A random forest-based model for the prediction of construction-stage carbon emissions at the early design stage.  Journal of Cleaner Production.  328, 129657 (2021).
  7. Mamat R. C., Ramli A.  Evolutionary polynomial regression for predicting the unconfined compressive strength of lime-stabilized.  Suranaree Journal of Science and Technology.  30 (2), 010212(1–7) (2023).
  8. Mamat R. C., Ramli A., Samad A. M., Kasa A., Razali S. F. M.  Performance prediction evaluation of machine learning models for slope stability analysis: a comparison between ANN, ANN-ICA and ANFIS.  Journal of Electrical Systems.  20 (10s), 4364–4374 (2024).
  9. Zhang H., Peng J., Wang R., Zhang M., Gao C., Yu Y.  Use of random forest based on the effects of urban governance elements to forecast CO$_2$ emissions in Chinese cities.  Heliyon.  9 (6), e16693 (2023).
  10. Kim T. H., Chae C. U., Kim G. H., Jang H. J.  Analysis of CO$_2$ emission characteristics of concrete used at construction sites.  Sustainability.  8 (4), 348 (2016).
  11. Mamat R. C., Ramli A.  A simple solution for estimating the smear effect permeability ratio using finite element method.  Journal of Rehabilitation in Civil Engineering.  12 (1), 34–46 (2024).
  12. Mamat R. C., Kasa A., Razali S. F. M., Samad A. M., Ramli A., Yazid M. R. M.  Application of artificial intelligence in predicting ground settlement on earth slope.  AIP Conference Proceedings.  2138 (1), 040015 (2019).
  13. Su S., Zang Z., Yuan J., Pan X., Shan M.  Considering critical building materials for embodied carbon emissions in buildings: A machine learning-based prediction model and tool.  Case Studies in Construction Materials.  20, e02887 (2024).
  14. Ye L., Du P., Wang S.  Industrial carbon emission forecasting considering external factors based on linear and machine learning models.  Journal of Cleaner Production.  434, 140010 (2024).
  15. Jin Y., Sharifi A., Li Z., Chen S., Zeng S., Zhao S.  Carbon emission prediction models: A review.  Science of the Total Environment.  927, 172319 (2024).
  16. Lai K. E., Rahiman N. A., Othman N., Ali K. N., Lim Y. W., Moayedi F., Dzahir M. A. M.  Quantification process of carbon emissions in the construction industry.  Energy and Buildings.  289, 113025 (2023).
  17. Breiman L.  Random forests.  Machine Learning.  45, 5–32 (2001).
  18. Mamat R. C., Kasa A., Razali S. F. M.  Performance prediction of road embankment on soft soil stabilized with prefabricated vertical drains using numerical method.  International Journal of Advanced Trends in Computer Science and Engineering.  8 (4), 1601–1608 (2019).
  19. Mamat R. C., Ramli A., Khahro S. H., Yusoff N. I. M.  Numerical simulation and field measurement validation of road embankment on soft ground improved by prefabricated vertical drains: A comparative Study.  Applied Sciences.  12 (16), 8097 (2022).
  20. Vapnik V.  The nature of statistical learning theory.  Springer Science and Business Media (2013).
  21. Mamat R. C., Ramli A., Samad A. M., Kasa A., Razali S. F. M., Omar M. B. H. C.  Stability assessment of embankment on soft Soil improved with prefabricated vertical drains using empirical and limit equilibrium approaches.  International Journal of Advanced Trends in Computer Science and Engineering.  8 (1.6), 444–449 (2019).
  22. Mamat R. C., Kasa A., Razali S. F. M.  The applications and future perspectives of adaptive neuro-fuzzy inference system in road embankment stability.  Journal of Engineering Science and Technology Review.  12 (5), 75–90 (2019).
  23. Zhao G., Pan X., Yan H., Tian J., Han Y., Guan H.  Predicting engineering properties of controlled low-strength material made from waste soil using optimized SVR models.  Case Studies in Construction Materials.  20, e03325 (2024).