Cubic parameter homotopy function for solving nonlinear equations

2025;
: pp. 410–414
https://doi.org/10.23939/mmc2025.02.410
Received: December 20, 2024
Revised: April 09, 2025
Accepted: April 15, 2025

Rahman M. S. A., Nor H. M., Ahmad M. Z., Abd Rahman N. H.  Cubic parameter homotopy function for solving nonlinear equations.  Mathematical Modeling and Computing. Vol. 12, No. 2, pp. 410–414 (2025) 

1
Institute of Engineering Mathematics, Pauh Putra Main Campus, Universiti Malaysia Perlis; Department of Computer and Mathematical Sciences, Universiti Teknologi MARA Cawangan Pulau Pinang
2
Institute of Engineering Mathematics, Pauh Putra Main Campus, Universiti Malaysia Perlis
3
Institute of Engineering Mathematics, Pauh Putra Main Campus, Universiti Malaysia Perlis
4
Department of Computer and Mathematical Sciences, Universiti Teknologi MARA Cawangan Pulau Pinang

This study explores the efficacy of the homotopy function, which combines the classical iterative technique with the homotopy continuation method for solving zeros of nonlinear equations and approximating their roots.  While numerous homotopy functions have been examined in previous research, this paper focuses on employing a cubic parameter as the homotopy function within the Newton-HCM framework.  Through a series of numerical examples, we demonstrate that our proposed homotopy function, named cubic parameter homotopy function, consistently outperforms existing alternatives in terms of accuracy and computational efficiency.  The results underscore the effectiveness of leveraging specific homotopy functions within the Newton-HCM approach, offering valuable insights for practitioners and researchers in nonlinear equation solving and computational mathematics.

  1. Gritton K. S., Seader J. D., Lin W.-J.  Global homotopy continuation procedures for seeking all roots of a nonlinear equation.  Computers & Chemical Engineering.  25 (7–8), 1003–1019 (2001).
  2. Gdawiec K., Argyros I. K., Qureshi S., Soomro A.  An optimal homotopy continuation method: Convergence and visual analysis.  Journal of Computational Science.  74, 102166 (2023).
  3. Wang Y., Wu W., Xia B.  A Special Homotopy Continuation Method For A Class of Polynomial Systems.  Computer Algebra in Scientific Computing.  10490, 362–376 (2017).
  4. Nor H. M., Izani A., Majid A. A.  Quadratic Bezier Homotopy Function for Solving System of Polynomial Equations.  Matematika.  29, 159–171 (2013).
  5. Ramli S. S., Nor H. M., Saharizan N. S., Nasir M. A. S.  Cubic Bezier Homotopy Function for Solving Exponential Equations.  Journal of Advanced Research in Computing and Applications.  4 (1), 1–8 (2016).
  6. Nor H. M., Yatim S. A. M.  Quadratic parameter homotopy function for solving polynomial equations.  Songklanakarin Journal of Science and Technology.  43 (1), 237–242 (2021).
  7. Paláncz B., Awange J. L., Zaletnyik P., Lewis R. H.  Linear homotopy solution of nonlinear systems of equations in geodesy.  Journal of Geodesy.  84, 79–95 (2010).
  8. Verschelde J. M.  Homotopy continuation methods for solving polynomial systems.  PhD Thesis, Katholieke Universiteit Leuven, Belgium (1996).
  9. Ismail W. Z. A. W., Nor H. M., Ishak S. N.  Newton Homotopy Continuation Method for Solving Nonlinear Equations using Mathematica.  Journal of Science and Technology.  7 (1), 39–48 (2016).
  10. Wu T.-M.  A study of convergence on the Newton-homotopy continuation method.  Applied Mathematics and Computation.  168 (2), 1169–1174 (2005).
  11. Niu D., Jin Z., Wu X., Inoue Y.  Global convergence of the Newton fixed-point homotopy method for MOS transistor circuits.  2017 Chinese Automation Congress (CAC).  7828–7832 (2017).
  12. Ku C.-Y., Yeih W., Liu C.-S.  Solving Non-Linear Algebraic Equations by a Scalar Newton-homotopy Continuation Method.  International Journal of Nonlinear Sciences and Numerical Simulation.  11 (6), 435–450 (2010).
  13. Tahir H. M., Nor H. M., Nasir M. A. S., Bakar S. A.  Solution for divergence problem of the Halley method in solving nonlinear equations using homotopy continuation method.  AIP Conference Proceedings.  2905 (1), 030018 (2024).
  14. Nor H. M., Asnor A. I., Yahya Z. R., Ahmad M. Z.  Introduction of Ostrowski Homotopy Continuation Method for Solving Nonlinear Equations Using Mathematica.  Journal of Science and Technology.  14 (1), 37–43 (2022).