Magnetohydrodynamics flow of hybrid nanofluid over a heated thin needle

2025;
: pp. 363–374
https://doi.org/10.23939/mmc2025.02.363
Received: December 18, 2024
Revised: April 15, 2025
Accepted: April 17, 2025

Ilias M. R., Awang N., Fazri N. N., Rosmadi S. A. A., Salleh S. N. A., Nazar R. M.  Magnetohydrodynamics flow of hybrid nanofluid over a heated thin needle.  Mathematical Modeling and Computing. Vol. 12, No. 2, pp. 363–374 (2025)    

1
School of Computing, Informatics and Mathematics, University Teknologi MARA; Department of Mathematical Sciences, Faculty of Science and Technology, University Kebangsaan Malaysia
2
Mathematical Sciences Studies, College of Computing, Informatics and Mathematics, University Teknologi MARA Negeri Sembilan Branch
3
Mathematical Sciences Studies, College of Computing, Informatics and Mathematics, University Teknologi MARA Negeri Sembilan Branch
4
Mathematical Sciences Studies, College of Computing, Informatics and Mathematics, University Teknologi MARA Negeri Sembilan Branch
5
Mathematical Sciences Studies, College of Computing, Informatics and Mathematics, University Teknologi MARA Kedah Branch
6
Department of Mathematical Sciences, Faculty of Science and Technology, University Kebangsaan Malaysia

Suspending nanoparticles in the base fluid can effectively improve the thermal conductivity of a fluid.  Therefore, this study focuses on a steady two-dimensional laminar forced convection boundary layer flow along a horizontal thin heated needle immersed in a hybrid nanofluid with convective boundary condition.  Copper and aluminium oxide nanoparticles with water as based fluid were selected for this study.  The governing partial differential equations are transformed into nonlinear ordinary differential equations by using an appropriate similarity transformation.  These equations are then solved numerically using bvp4c package in MATLAB software.  The effect of the involved parameters of interest, including nanoparticles volume fraction, needle thickness, velocity ratio, dimensionless slip length, interaction of magnetic field and convective boundary condition on the velocity and temperature profiles, as well as the skin friction coefficient and the local Nusselt number are illustrated through graphs and tables.  The result shows that as the nanoparticles volume fraction and dimensionless slip length parameter increase, the velocity profile increases.  On the other hand, the temperature increases when the parameters of needle thickness, dimensionless slip length, interaction of magnetic field, volume fraction of nanoparticles, velocity ratio parameter and convective boundary condition increase.  Overall, as the parameters increase Cu-Al$_2$O$_3$/water have higher values of skin friction and Nusselt number compared to water.  The applications of this investigation can be applied in the field of biomedical engineering where heated needles play a crucial role in medical treatments such as thermal ablation, drug delivery, and minimally invasive surgeries.

  1. Choi S. U. S.,  Eastman J. A.  Enhancing thermal conductivity of fluids with nanoparticles.  Argonne National Lab. (ANL), Argonne, IL, United States (1995).
  2. Eastman J. A., Choi U. S., Li S., Thompson L. J., Lee S.  Enhanced thermal conductivity through the development of nanofluids.  MRS Online Proceedings Library.  457, 3–11 (1996).
  3. Yildiz Ç.,  Arici M., Karabay H.  Comparison of a theoretical and experimental thermal conductivity model on the heat transfer performance of Al$_2$O$_3$-SiO$_2$/water hybrid-nanofluid.  International Journal of Heat and Mass Transfer.  140, 598–605 (2019).
  4. Ahmad S., Arifin N. M., Nazar R., Pop I.  Mixed convection boundary layer flow along vertical thin needles: Assisting and opposing flows.  International Communications in Heat and Mass Transfer.  35 (2), 157–162 (2008).
  5. Afridi M. I., Tlili I., Goodarzi M., Osman M., Khan N. A.  Irreversibility analysis of hybrid nanofluid flow over a thin needle with effects of energy dissipation.  Symmetry.  11 (5), 663 (2019).
  6. Waini I., Ishak A., Pop I.  Hybrid nanofluid flow and heat transfer past a vertical thin needle with prescribed surface heat flux.  International Journal of Numerical Methods for Heat & Fluid Flow.  29 (12), 4875–4894 (2019).
  7. Hamid A.  Terrific effects of Ohmic-viscous dissipation on Casson nanofluid flow over a vertical thin needle: buoyancy assisting \& opposing flow.  Journal of Materials Research and Technology.  9 (5), 11220–11230 (2020).
  8. Aladdin N. A. L., Bachok N., Pop I.  Boundary layer flow and heat transfer of Cu-Al$_2$O$_3$/water over a moving horizontal slender needle in presence of hydromagnetic and slip effects.  International Communications in Heat and Mass Transfer.  123, 105213 (2021).
  9. Prashar P., Ojjela O., Kambhatla P. K., Das S. K.  Numerical investigation of boundary layer flow past a thin heated needle immersed in hybrid nanofluid.  Indian Journal of Physics.  96, 137–150 (2022).
  10. Singh P., Kumar D., Kumari A.  Effect of heat and mass transfer in nanofluid flow along a vertical thin needle.  Materials Today: Proceedings.  57, 2276–2280 (2022).
  11. Ali B., Jubair S., Al-Essa L. A., Mahmood Z., Al-Bossly A., Alduais F. S.  Boundary layer and heat transfer analysis of mixed convective nanofluid flow capturing the aspects of nanoparticles over a needle.  Materials Today Communications. 35, 106253 (2023).
  12. Waini I., Ishak A., Pop I.  Hybrid nanofluid flow and heat transfer past a permeable stretching/shrinking surface with a convective boundary condition.  Journal of Physics: Conference Series.  1366, 012022 (2019).
  13. Sajid T., Al Mesfer M. K., Jamshed W., Eid M. R., Danish M., Irshad K., Ibrahim R. W., Batool S., El Din S. M., Altamirano G. C.  Endo/exothermic chemical processes influences of tri-hybridity nanofluids flowing over wedge with convective boundary constraints and activation energy.  Results in Physics.  51, 106676 (2023).
  14. Jan S. U., Khan U., El-Rahman M. A., Islam S., Hassan A. M., Ullah A.  Effect of variable thermal conductivity of ternary hybrid nanofluids over a stretching sheet with convective boundary conditions and magnetic field.  Results in Engineering.  20, 101531 (2023).
  15. Jusoh R., Naganthran K., Jamaludin A., Ariff M. H., Basir M. F. M., Pop I.  Mathematical analysis of the flow and heat transfer of Ag-Cu hybrid nanofluid over a stretching/shrinking surface with convective boundary condition and viscous dissipation.  Data Analytics and Applied Mathematics.  1 (1), 11–22 (2020).
  16. Ilias M. R., Ismail N. S., Ab Raji N. H., Rawi N. A., Shafie S.  Unsteady aligned MHD boundary layer flow and heat transfer of a magnetic nanofluids past an inclined plate.  International Journal of Mechanical Engineering and Robotics Research.  9, 197–206 (2020).
  17. Song Y.-Q., Hamid A., Khan M. I., Gowda R. J. P., Kumar R. N., Prasannakumara B. C., Khan S. U., Khan M. I., Malik M. Y.  Solar energy aspects of gyrotactic mixed bioconvection flow of nanofluid past a vertical thin moving needle influenced by variable Prandtl number.  Chaos, Solitons & Fractals.  151, 111244 (2021).
  18. Sulochana C., Samrat S. P., Sandeep N.  Boundary layer analysis of an incessant moving needle in MHD radiative nanofluid with joule heating.  International Journal of Mechanical Sciences.  128129, 326–331 (2017).
  19. Souayeh B., Reddy M. G., Sreenivasulu P., Poornima T., Rahimi-Gorji M., Alarifi I. M.  Comparative analysis on non-linear radiative heat transfer on MHD Casson nanofluid past a thin needle.  Journal of Molecular Liquids.  284, 163–174 (2019).
  20. Devi S. P. A., Devi S. S. U.  Numerical investigation of hydromagnetic hybrid Cu-Al$_2$O$_3$/water nanofluid flow over a permeable stretching sheet with suction.  International Journal of Nonlinear Sciences and Numerical Simulation.  17, 249–257 (2016).
  21. Oztop H. F., Abu-Nada B.  Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids.  International Journal of Heat and Fluid Flow.  29 (5), 1326–1336 (2008).
  22. Shampine L. F., Gladwell I., Thompson S.  Solving ODEs with MATLAB.  Cambridge University Press (2003).