An axisymmetric problem for Gaussian-distributed heating of a lateral surface of an infinite cylinder is solved in the framework of fractional thermoelasticity based on the time-fractional heat conduction equation with the Caputo derivative. The representation of stresses in terms of displacement potential and Love function is used to satisfy the boundary conditions on a surface of a cylinder. The results of numerical calculation are presented for different values of the order of fractional derivative and nondimensional time.
- Gurtin M. E., Pipkin A. C. A general theory of heat conduction with finite wave speeds. Arch. Rational Mech. Anal. 31, 113 (1968).
- Povstenko Y. Thermoelasticity which uses fractional heat conduction equation. Math. Meth. Phys.-Mech. Fields 51, 239 (2008). See also J. Math. Sci. 162, 296 (2009).
- Povstenko Y. Theory of thermoelasticity based on the space-time-fractional heat conduction equation. Phys. Scr. T. 136, 014017 (2009).
- Povstenko Y. Fractional Cattaneo-type equations and generalized thermoelasticity. J. Thermal Stresses. 34, 97 (2011).
- Povstenko Y. Theories of thermal stresses based on space-time-fractional telegraph equations. Comp. Math. Appl. 64, 3321 (2012).
- Cattaneo C. Sulla conduzione del calore. Atti Sem. Mat. Fis. Univ. Modena. 3, 83 (1948).
- Lord H. W., Shulman Y. A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids. 15, 299 (1967).
- Nigmatullin R. R. To the theoretical explanation of the “universal response”. Phys. Stat. Sol. (b). 123, 739 (1984).
- Green A. E., Naghdi P. M. Thermoelasticity without energy dissipation. J. Elast. 31, 189 (1993).
- Povstenko Y. Fractional heat conduction equation and associated thermal stresses. J. Thermal Stresses. 28, 83 (2005).
- Povstenko Y. Non-axisymmetric solutions to time-fractional diffusion-wave equation in an infinite cylinder. Fract. Calc. Appl. Anal. 14, 418 (2011).
- Gorenflo R., Mainardi F. Fractional calculus: Integral and differential equations of fractional order. In: Carpinteri A., Mainardi F. (eds.) Fractals and Fractional Calculus in Continuum Mechanics, pp. 223–276. Springer (1997).
- Podlubny I. Fractional Differential Equations. Academic Press (1999).
- Kilbas A. A., Srivastava H. M., Trujillo J. J. Theory and Applications of Fractional Differential Equations. Elsevier (2006).
- Povstenko Y. Stresses exerted by a source of diffusion in a case of a non-parabolic diffusion equation. Int. J. Eng. Sci. 43, 977 (2005).
- Povstenko Y. Two-dimensional axisymmentric stresses exerted by instantaneous pulses and sources of diffusion in an infinite space in a case of time-fractional diffusion equation. Int. J. Solids Struct. 44, 2324 (2007).
- Povstenko Y. Fundamental solution to three-dimensional diffusion-wave equation and associated diffusive stresses. Chaos, Solitons and Fractals. 36, 961 (2008).
- Povstenko Y. Fundamental solutions to central symmetric problems for fractional heat conduction equation and associated thermal stresses. J. Thermal Stresses. 31, 127 (2008).
- Povstenko Y. Fractional heat conduction equation and associated thermal stresses in an infinite solid with spherical cavity. Quart. J. Mech. Appl. Math. 61, 523 (2008).
- Povstenko Y. Fractional radial heat conduction in an infinite medium with a cylindrical cavity and associated thermal stresses. Mech. Res. Commun. 37, 436 (2010).
- Povstenko Y. Dirichlet problem for time-fractional radial heat conduction in a sphere and associated thermal stresses. J. Thermal Stresses. 34, 51 (2011).
- Povstenko Y. Time-fractional radial heat conduction in a cylinder and associated thermal stresses. Arch. Appl. Mech. 82, 345 (2012).
- Povstenko Y. The Neumann boundary problem for axisymmetric fractional heat conduction in a solid with cylindrical hole and associated thermal stresses. Meccanica. 47, 23 (2012).
- Povstenko Y. Fractional Thermoelasticity. In: Hetnarski R. B. (ed.) Encyclopedia of Thermal Stresses. 4, 1778–1787. Springer (2014).
- Povstenko Y. Fractional Thermoelasticity. Springer (2015).
- Narahari Achar B. N., Hanneken J. W. Fractional radial diffusion in a cylinder. J. Mol. Liq. 114, 147 (2004).
- Povstenko Y. Fractional radial diffusion in a cylinder. J. Mol. Liq. 137, 46 (2008).
- Özdemir N., Karadeniz D. Fractional diffusion-wave problem in cylindrical coordinates. Phys. Lett. A. 372, 5968 (2008).
- Özdemir N., Agrawal O. P., Karadeniz D., Iskender B. B. Analysis of an axis-symmetric fractional diffusion-wave problem. J. Phys. A: Math. Theor. 42, 355208 (2009).
- Özdemir N., Karadeniz D., Iskender B. B. Fractional optimal control problems of a distributed systems in cylindrical coordinates. Phys. Lett. A. 373, 221 (2009).
- Povstenko Y. Fractional radial diffusion in an infinite medium with a cylindrical cavity. Quart. Appl. Math. 47, 113 (2009).
- Povstenko Y. Signaling problem for time-fractional diffusion-wave equation in a half-space in the case of angular symmetry. Nonlinear Dyn. 59, 593 (2010).
- Povstenko Y. Evolution of the initial box-signal for time-fractional diffusion-wave equation in a case of different spatial dimensions. Physica A. 381, 4696 (2010).
- Povstenko Y. Non-axisymmetric solutions to time-fractional heat conduction equation in a half-space in cylindrical coordinates. Math. Meth. Phys.-Mech. Fields. 54, 212 (2011).
- Povstenko Y. Solutions to time-fractional diffusion-wave equation in cylindrical coordinates. Adv. Difference Equat. 2011, 930297 (2011).
- Povstenko Y. Axisymmetric solutions to time fractional heat conduction equation in a half-space under Robin boundary conditions. Int. J. Diff. Equat. 2012, 154085 (2012).
- Povstenko Y. Axisymmetric solutions to fractional diffusion-wave equation in a cylinder under Robin boundary condition. Eur. Phys. J. Special Topics. 222, 1767 (2013).
- Sneddon I. N. The Use of Integral Transforms. McGraw-Hill (1972).
- Erdélyi A., Magnus W., Oberhettingerv F., Tricomi F. Higher Transcendental Functions. 3. McGraw-Hill (1955).
- Parkus H. Instationäre Wärmespannungen. Springer (1959).
- Nowacki W. Thermoelasticity. Pergamon Press; 2nd edition (1986).
- Gorenflo R., Loutchko J., Luchko Yu. Computation of the Mittag-Leffer function and its derivatives. Fract. Calc. Appl. Anal. 5, 491 (2002).