Quantum capacity of nanoplate in a quantizing magnetic field is studied. Investigation shows that quantum capacitance of nanoplate has step-like dependence on the Fermi level or potential bias This form is caused, practically, only by the dimensional quantized states. Landau quantization is manifested only at low temperatures as slight renormalization of steps without changing their sizes.
- Luryi S. Quantum Capacitance Devices. Appl. Phys. Lett. 52, 501–503 (1988).
- John D. C., Castro L. C., Pulfrey D. L. Quantum Capacitance in Nanoscale Device Modelling. J. Appl. Phys. . 96, 5180–5184 (2004).
- Dröscher, Roulleau P., Molitor F., Studerus P., Stampfer C., Ensslin K., Ihn T. Quantum capacitance and density of states of graphene Appl. Phys. Lett. 96, 152104 (2010).
- Xia J., Chen F., Li J., Tao N. Measurement of quantum capitance of graphene Nature Nanotechnology. 4, 505–509 (2009).
- Parkash V., Goel F. R. Quantum capacitance extraction for carbon nanotube interconnects Nanoscale Res. Lett. 5, 1424–1430 (2010).
- Zivanovic S., Milanovicl V., Ikovic Z. Intraband absorption in semiconductaing quantum wells in the presence of a perpendicular magnetic field Phys. Rev. B. 52, 8305–8311 (1995).
- Bacher G. Optical Spectroscopy on Epitaxially Grown II–VI Single Quantum Dots. Topics in Applied Physics. 90, 147–184 (2003).
- Salehani H. K., Zakeri M. Investigation of Light Absorption in a ZnS Quantum Dot. Journal of Spectroscopy. 2013, 39718–78911 (2013).
- Hakimyfard A., Barseghyan M. G., Kirakosyan A. A. Simultaneous effects of pressure and magnetic field on intersubband optical transitions in Pöschl–Teller quantum well. Physica E: Low-dimensional Systems and Nanostructures. 41, 1596–1599 (2009).
- Davydov A. S. Quantum Mechanics. Pergamon Press. (1965).
- Davydov A. S. Theory of Solids. Moscow, Nauka. (1980).