Correlation functions of the degenerate relativistic electron gas with high density

2016;
: pp. 97-110
https://doi.org/10.23939/mmc2016.01.097
Received: July 01, 2016

Math. Model. Comput. Vol. 3, No. 1, pp. 97-110 (2016)

1
Ivan Franko National University of Lviv
2
Ivan Franko National University of Lviv
3
Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine
4
Ivan Franko National University of Lviv

The two- and three-particle correlation functions of degenerate relativistic model of homogeneous electron gas with Coulomb interactions at $T=0$ K in the momentum-frequency presentation in the local field approximation are investigated. These functions are sufficient for a correct calculation of the equation of state for the electron-nuclear model with the densities that correspond to the degenerate dwarfs.

  1. Chandrasekhar S. The maximum mass of ideal white dwarfs. Astrophys. Journ. 74, 81 (1931).
  2. Chandrasekhar S. Stellar configurations with degenerate cores’ (second paper). Mon. Not. Roy. Astron. Soc. 95, 676 (1935).
  3. Salpeter E. Energy and pressure of a zero-temperature plasma. Astrophys. Journ. 134, 669 (1961).
  4. Vavrukh M., Krokhmalskii T. Reference system approach in the electron liquid theory. I. General relations. Phys. Stat. Sol. (b), 168, n. 2, 519 (1991).
  5. Vavrukh M., Krokhmalskii T. Reference system approach in the electron liquid theory. II. Ground state characteristics in the medium density region. Phys. Stat. Sol. (b), 169, 451 (1992).
  6. Vavrukh M., Solovyan V., Vavrukh N. Reference system approach in the electron liquid theory. III. Dynamic function of the local-field correction. Phys. Stat. Sol. (b), 177, 361 (1993).
  7. Vavrukh M., Vavrukh N. Generalization of the local-field concept in the theory of Fermi liquid. Low Temp. Phys. 22, n. 9, 767 (1996).
  8. Gell-Mann M., Brueckner K. Correlation energy of an electron gas at high density. Phys. Rev. 106, 364 (1957).
  9. Brovman E., Kagan Yu. Singularities of multitail ring diagrams for fermi systems. Zh. Eksp. Teor. Fiz. 63, n. 5, 1937 (1972).
  10. Lloyd P., Sholl C. A structure expansion of the cohesive energy of simple metals in the effective Hamiltonian approximation. J. Phys. C, 1, n. 2, 1620 (1968).
  11. Hwa R., Teplitz V. Homology and Feynman integrals. New York, Amsterdam, (1968). 223 p.
  12. Vavrukh M., Tyshko N., Smerechynskyj S. Interparticle interactions, general relativity effects, and critical parameters of white dwarfs. Mathematical modeling and computing. 1, n.2, 264–283 (2014).
  13. Geldart D. J. W., Taylor R. Wave-number dependence of the static screening function of an interacting electron gas. Can. J. Phys. 48, n. 2, 155 (1970).