Modeling of carbon monoxide oxidation process on the two-dimensional catalyst surface

2016;
: pp. 146-162
https://doi.org/10.23939/mmc2016.02.146
Received: December 29, 2017

Math. Model. Comput. Vol. 3, No. 2, pp. 146-162 (2016)

1
Lviv Polytechnic National University
2
Lviv Polytechnic National University

In this paper the two-dimensional mathematical model for carbon monoxide (CO) oxidation on the surface of Platinum (Pt) catalyst is investigated accounting for the processes of the catalyst surface reconstruction and the effect of the substrate temperature. It is shown that the stability region for reaction of CO oxidation changes in two-dimensional case.

  1. Slinko M. M., Jaeger N. I. Oscillating Heterogeneous Catalytic Systems (Studies in Surface Science and Catalysis). Eds. Amsterdam: Elsevier; Vol. 86 (1994).
  2. Baxter R. J., Hu P. Insight into why the Langmuir-Hinshelwood mechanism is generally preferred. J. Chem. Phys. 116 (11), 4379–4381 (2002).
  3. Wilf M., Dawson P. T. Adsorption and desorption of oxygen on the Pt(110) surface – a thermal desorption and LEED-AES Study. Surf. Sci. 65, 399–418 (1977).
  4. Gomer R. Diffusion of adsorbates on metal surfaces. Reports on Progress in Physics. 53 (7), 917–1002 (1990).
  5. Kellogg G. L. Direct observations of the (1x2) surface reconstruction on the Pt(110) plane. Phys. Rev. Lett. 55, 2168 (1985).
  6. Gritsch T., Coulman D., Behm R. J., Ertl G. Mechanism of the CO-induced (1x2)-(1x1) structural transformation of Pt(110). Phys. Rev. Lett. 63, 1086 (1989).
  7. Krischer K., Eiswirth M., Ertl G. Oscillatory CO oxidation on Pt(110): Modeling of temporal self-organization. J. Chem. Phys. 96, 9161–9172 (1992).
  8. Baer M., Eiswirth M., Rotermund H. H., Ertl G. Solitary-wave phenomena in an excitable surface-reaction. Phys. Rev. Lett. 69 (6), 945–948 (1992).
  9. Gasser R. P. H., Smith. E. B. A surface mobility parameter for chemisorption. Chem. Phys. Lett. 1 (10), 457–458 (1967).
  10. Bertram M., Mikhailov A. S. Pattern formation on the edge of chaos: Mathematical modeling of CO oxidation on a Pt(110) surface under global delayed feedback. Phys. Rev. E. 67, 036207 (2003).
  11. Bzovska I. S., Mryglod I. M. Chemical oscillations in catalytic CO oxidation reaction. Condens. Matter Phys. 13 (3), 34801:1–5 (2010).
  12. Connors K. A. Chemical Kinetics: The Study of Reaction Rates in Solution. New York: VCH Publishers (1990).
  13. Cisternas Y., Holmes P., Kevrekidis I. G., Li X. CO oxidation on thin Pt crystals: Temperature slaving and the derivation of lumped models. J. Chem. Phys. 118, 3312–3328 (2003).
  14. Maron S. H., Lando J. B. Fundamentals of Physical Chemistry. New York: MacMillan Publ. Comp. Inc. (1974).
  15. Suchorski Y. Private comunication.
  16. Shampine L. F., Reichelt M. W. The Matlab ODE suite. SIAM J. Sci. Comput. 18 (1), 1–22 (1997).
  17. Patchett A. J., Meissen F., Engel W., Bradshaw A. M., Imbihl R. The anatomy of reaction diffusion fronts in the catalytic oxidation of carbon monoxide on platinum (110). Surf. Sci. 454 (1), 341–346 (2000).
  18. Bzovska I. S., Mryglod I. M. Surface patterns in catalytic carbon monoxide oxidation reaction. Ukr. J. Phys. 61 (2), 134–142 (2016).
  19. Spiel Ch., Vogel D., Suchorski Y., Drachsel W., Schlogl R., Rupprechter G. Catalytic CO oxidation on individual (110) domains of a polycrystalline Pt foil: local reaction kinetics by PEEM. Catal. Lett. 141 (5), 625–632 (2011).