Mathematical and computer modeling of intraparticle radionuclides mass transfer in catalytic porous media under isothermal conditions

: pp. 117-125
Received: November 11, 2017
The National University of Ostroh Academy
National University of Water and Environmental Engineering

The formulation and the mathematical modeling of one-dimensional radionuclides purification process in catalytic porous media under isothermal conditions are considered. The analytical and numerical solutions of the corresponding boundary value problem are found. The comparison of the results is carried out. The "NanoSurface" computer simulation software complex has been improved and the improvement has been verified.

  1. Auffan M., Shipley H. J., Yean S., Kan A. T., Tomson M., Rose J., Bottero J. Y.  Nanomaterials as  adsorbents, Environmental Nanotechnology: Applications and Impacts of Nanomaterials. McGraw-Hill, New York, pp. 371--392 (2007).
  2. Rouquerol J., Avnir D., Fairbridge C. W., Everett D. H., Haynes J. M., Pernicone N., Ramsay J. D. F., Sing K. S. W., Unger K. K. Recommendations for the characterization of porous solids (Technical Report).  Pure Appl. Chem. 66 (8), 1739--1758 (1994).
  3. Vlasyuk A. P., Zhukovskyy V. V., Bondarchuk M. M. Mathematical Modelling of Vertical Migration of Radionuclides in Catalytic Porous Media with Traps in Linear Case, Theoretical and Applied Aspects of Cybernetics.  Proceedings of the 5th International Scientific Conference of Students and Young Scientists, pp. 208--219 (2015).
  4. Safonyk A. P.  Modelling the filtration processes of liquids from multicomponent contamination in the conditions of authentication of mass transfer coefficient. International Journal of Mathematical Models and Methods in Applied Sciences. 9, 189--192 (2015).
  5. Vlasyuk A. P., Zhukovskii V. V. Mathematical Simulation of the Migration of Radionuclides in a Soil Medium Under Nonisothermal Conditions with Account for Catalytic Microparticles and Nonlinear Processes.  Journal of Engineering Physics and Thermophysics. 90 (6),  1386--1398 (2017).
  6. Conner W. C., Fraissard J. P. Fluid transport in nanoporous materials, Vol. 219 of NATO science series II: Mathematics, physics, and chemistry, Springer in cooperation with NATO Public Diplomacy Division, Dordrecht, the Netherlands (2006).
  7. Petryk M., Leclerc S., Canet D., Sergienko I., Deineka V., Fraissard J. Competitive Diffusion of Gases in a Zeolite Bed: NMR and Slice Selection Procedure, Modeling, and Parameter  Identification. The Journal of Physical Chemistry C. 119 (47), 26519--26525 (2015).
  8. Budak B. M., Samarskii A. A., Tikhonov A. N., Sneddon I. N., Stark M., Ulam S. A Collection of  Problems on Mathematical Physics: International Series of Monographs in Pure  and Applied Mathematics, Elsevier Science (2013).
  9. Marchuk G. I. Methods of Numerical Mathematics, Stochastic Modelling and Applied Probability. Springer Verlag, New York, NY (1982).
  10. Vlasyuk A. P., Zhukovskyy V. V. Nanosurface --- a tool for computer modeling of mass transfer process in catalytic porous media.  Abstracts of XXVIII International Conference "Problems of decision making under uncertainties", pp. 122--124 (2016).
  11. Vlasyuk A. P., Zhukovskyy V. V. A modern approach for software construction of tools for mathematical modeling of mass transfer processes in catalytic porous media. Theoretical & Applied Science.  44 (12), 69--75 (2016).
  12. McConnell S. Code complete. Microsoft Press, Redmond, Wash., 2nd edition edition (2004).
  13. Oberkampf W. L.  Verification and validation in scientific computing. Cambridge Univ. Press, Cambridge [u.a.] (2013).
  14. Zhukovskyy V. V., Vlasyuk A. P.  Mathematical modelling of vertical migration of radionuclides in catalytic porous media in non-isothermal conditions. Research on modern systems for manufacture and measurement of components of machines and devices, SCIENCE REPORT Project CIII-PL-0007, 177--190 (2016).
Math. Model. Comput. Vol.4, No.2, pp.117-125 (2017)