Generalization and application of the Cauchy-Poisson method to elastodynamics of a layer and the Timoshenko equation

2018;
: pp. 88-97
https://doi.org/10.23939/mmc2018.01.088
Received: March 21, 2018

Math. Model. Comput. Vol. 5, No. 1, pp. 88-97 (2018)

Authors:
1
Institute of Hydromechanics, NASU

The Cauchy-Poisson method is extended to n-dimensional Euclidean space so that to obtain partial differential equations (PDEs) of a higher order.   The application in the construction of hyperbolic approximations is presented, generalizing and supplementing the previous investigations.   Restrictions on derivatives in Euclidean space are introduced.  The hyperbolic degeneracy by parameters and its realization in the form of necessary and sufficient conditions are considered.  As a particular case of 4-dimensional Euclidean space, keeping operators up to the 6th order, we obtain a generalized hyperbolic equation of transverse (bending) vibrations of plates with coefficients depending only on the Poisson number.  Numerical calculations are carried out and presented.  This equation includes, as special cases, all the known equations of Bernoulli-Euler, Kirchhoff, Rayleigh, Timoshenko.   It should be noted that the refined equation of bending oscillations of a beam, firstly presented by Timoshenko, must be considered as the development of Maxwell's and Einstein's investigations on the perturbation propagation with finite velocity in media.  For the first time, the conformity with the Cosserat theory is noted.

  1. Maxwell J. C. A dynamical theory of the electromagnetic field. Cambridge University Press (1864).
  2. Maxwell J. C. On the dynamical theory of gases. Phil. Trans. Roy. Soc. 157, 49–88 (1867).
  3. Einstein A. The meaning of relativity. Princeton University Press (1950).
  4. Weber J. General relativity and gravitational waves. New York, Interscience Publishers (1961).
  5. Selezov I. T., Kryvonos Yu. G. Wave hyperbolic models propagation of perturbations. Kiev, Naukova Dumka (2015).
  6. Selezov I. T., Kryvonos Yu. G. Modeling medicine propagation in tissue: generalized statement. Cybernetics and Systems Analysis. 53 (4), 535–542 (2017).
  7. Cauchy A. L. Sur l’équilibre et le mouvement d’une lame solide. Exercices Math. 3, 245–326 (1828).
  8. Poisson S. D. Mémoire sur l’équilibre et le mouvement des corps élastiques. Méem. Acad. Roy. Sci. 8, 357–570 (1829).
  9. Selezov I. T. Degenerated hyperbolic approximation of the wave theory of elastic plates. Ser. Operator Theory. Advances and Applications. Differential Operators and Related Topics. Proc. of Mark Krein Int. Conf., Ukraine, Odessa, 18–22 August 1997. Basel/Switzerland, Birkhauser. Vol. 117, 339–354 (2000).
  10. Dunford N., Schwartz J. T. Linear operators. Part II. Spectral theory. Self adjoint operators in Hilbert space. New York, London, Interscience Publishers (1963).
  11. Courant R., Hilbert D. Methods of mathematical physics. Vol. 1, 2. Interscience, New York-London (1962).
  12. Kythe P. K. Fundamental solutions for differential operators and applications. Birkhauser Boston (1996).
  13. Kalashnikov A. S. The concept of a finite rate of propagation of a perturbation. Russian Math. Surveys. 34 (2), 235–236 (1979).
  14. Misokhata C. The theory of partial differential equations. University Kioto (1965).
  15. Timoshenko S. P. On the correction for shear of the differential equation for transverse vibrations of prismatic bar. Philosophical Magazine and Journal of Science. 41 (245), 744–746 (1921).
  16. Kirchhoff G. Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. Journal für die reine und angewandte Mathematik. 40 (1), 51–58 (1850).
  17. Rayleigh D. On the free vibrations of an infinite plate of homogeneous isotropic elastic matter. Proc. London Math. Soc. 10, 225–237 (1889).
  18. Cosserat E.& F. Théorie de Corps déformables. Hermann, Paris (1909).
  19. Cattaneo C. Sulla conduzione del calore. Atti Semin. Mat. Fis. della Università di Modena. 3, 3–21 (1948).
  20. Luikov A. V. Application of irreversible thermodynamics methods to investigation of heat and mass transfer. Int. J. Heat Mass Transfer. 9 (2), 139–152 (1966).
  21. Davydov B. I. The diffusion equation with allowance for the molecular velocity. Reports of the Academy of Sciences of the USSR. 2 (7), 474–475 (1935).
  22. Monin A. M. On diffusion with finite velocity. Izv. Academy of Sciences of the USSR, ser. geogr. 3, 234–248 (1955).
  23. Davies R. W. The connection between the Smoluchowski Equation and the Kramers-Chandrasekhar equation. Phys. Rev. 93 (6), 1169–1171 (1954).
  24. Fock V. A. Solution of a problem in the theory of diffusion by the method of finite differences and its application to diffusion of light. Proceedings of the State Optical Institute. Vol. 4, Issue 34, 1–32. §13  (1926). Connection with differential equations and an expression for diffusion. 29–31.
  25. Selezov I. Extended models of sedimentation in coastal zone. Vibrations in Physical Systems. 26, 243–250 (2014).