Method of integral equations in the polytropic theory of stars with axial rotation. II. Polytropes with indices $n>1$

2021;
: pp. 474–485
https://doi.org/10.23939/mmc2021.03.474
Received: June 02, 2021
Accepted: July 15, 2021
1
Ivan Franko National University of Lviv
2
Ivan Franko National University of Lviv

A new method for finding solutions of the nonlinear equilibrium equations for rotational polytropes was proposed, which is based on a self-consistent description of internal region and periphery using the integral form of equations.  Dependencies of geometrical parameters, surface form, mass, moment of inertia and integration constants on angular velocity were calculated for indices $n=2.5$ and $n=3$.

  1. Skulskyy M. Yu., Vavrukh M. V., Smerechynskyi S. V.  X-ray binary Beta Lyrae and its donor component structure.  IAU Symposium. 346, 139–142 (2019).
  2. Vavrukh M. V., Dzikovskyi D. V.  Method of integral equations in the polytropic theory of stars with axial rotation. I. Polytropes $n=0$ and $n=1$.  Mathematical Modeling and Computing. 8 (2), 338–358 (2021).
  3. Vavrukh M. V., Tyshko N. L., Dzikovskyi D. V., Stelmakh O. M.  The self-consistent description of stellar equilibrium with axial rotation.  Mathematical Modeling and Computing. 6 (2), 153–172 (2019).
  4. Vavrukh M. V., Tyshko N. L., Dzikovskyi D. V.  New approach in the theory of stellar equilibrium with axial rotation.  Journal of Physical Studies. 24 (3), 3902-1–3902-20 (2020).
  5. Vavrukh M. V., Dzikovskyi D. V.  Exact solution for the rotating polytropes with index unity, its approximations and some applications.  Contrib. Astron. Obs. Skalnaté Pleso. 50 (4), 748–771 (2020).
  6. Chandrasekhar S.  The Equilibrium of Distorted Polytropes: (I). The Rotational Problem.  MNRAS. 93 (5), 390–406 (1933).
  7. James R. A.  The Structure and Stability of Rotating Gas Masses.  Astrophys. Journ. 140, 552–582 (1964).
  8. Kong D., Zhang K., Schubert G.  An exact solution for arbitrarily rotating gaseous polytropes with index unity.  MNRAS. 448 (1), 456–463 (2015).
  9. Knopik J., Mach P., Odrzywołek A.  The shape of a rapidly rotating polytrope with index unity.  MNRAS. 467 (4), 4965–4969 (2017).
  10. Shapiro S. L., Teukolsky S. A.  Black Holes, White Dwarfs and Neutron Stars.  Cornell University, Ithaca, New York (1983).
  11. Monaghan J. J., Roxburgh I. W.  The Structure of Rapidly Rotating Polytropes.  MNRAS. 131 (1), 13–22 (1965).
  12. Milne E. A.  The equilibrium of a rotating star.  MNRAS. 83 (3), 118–147 (1923).
Mathematical Modeling and Computing, Vol. 8, No. 3, pp. 474–485 (2021)