Risk aversion plays a significant and central role in investors’ decisions in the process of developing a portfolio. In this portfolio optimization framework, we determine the portfolio that possesses the minimal risk by using a new geometrical method. For this purpose, we elaborate an algorithm that enables us to compute any Euclidean distance to a standard simplex. With this new approach, we can treat the case of portfolio optimization without short-selling in its entirety, and we also recover in geometrical terms the well-known results on portfolio optimization with allowed short-selling. Then, we apply our results to determine which convex combination of the CAC 40 stocks possesses the lowest risk. Thus, we not only obtain a very low risk compared to the index, but we also get a rate of return that is almost three times better than the one of the index.
- Markowitz H. Portfolio Selection. The Journal of Finance. 7 (1), 77–91 (1952).
- Sharpe W. F. A Simplified Model for Portfolio Analysis. Management Science. 9 (2), 277–293 (1963).
- Daníelsson J., Jorgensen B. N., de Vries C. G., Yang X. Optimal portfolio allocation under the probabilistic VaR constraint and incentives for financial innovation. Annals of Finance. 4, 345–367 (2008).
- Fontana C., Schweizer M. Simplified mean-variance portfolio optimization. Mathematics and Financial Economics. 6, 125–152 (2012).
- Ben Salah H., Chaouch M., Gannoun A., De Peretti C. Mean and median-based nonparametric estimation of returns in mean-downside risk portfolio frontier. Annals of Operations Research. 262 (1), 653–681 (2018).
- Ben Salah H. Gestion des actifs financiers : de l'approche Classique à la modélisation non paramétrique en estimation du DownSide Risk pour la constitution d'un portefeuille efficient. Thèse De Doctorat Des l’Universités Lyon1 Et Tunis 1 (2015).
- Perrin S., Roncalli T. Machine Learning Optimization Algorithms & Portfolio Allocation. Preprint arXiv:1909.10233 (2011).
- Bodnar T., Ivasiuk D., Parolya N., Schmid W. Mean-variance efficiency of optimal power and logarithmic utility portfolios. Mathematics and Financial Economics. 14, 675–698 (2020).
- Bachelier L. Théorie de la spéculation. Paris, Gauthier-Villars (1900).
- Rondepierre A. Méthodes numériques pour l'optimisation non linéaire déterministe. INSA de Toulouse (2017).
- Nagurney A. Portfolio Optimization. University of Massachusetts (2009).
- Moraux F. Finance de marché. Pearson Education France (2010).
- Poncet P., Portait R. Finance de marché. Dalloz, Paris (2014).
- Condat L. Fast projection onto the simplex and the $l_1$ ball. Mathematical Programming. 158, 575–585 (2016).
- Chen Y., Ye X. Projection Onto A Simplex. Preprint arXiv:1101.6081 (2011).