A new geometrical method for portfolio optimization

2021;
: pp. 400–409
https://doi.org/10.23939/mmc2021.03.400
Received: March 24, 2021
Accepted: June 10, 2021

Mathematical Modeling and Computing, Vol. 8, No. 3, pp. 400–409 (2021)

Authors:
1
Université de Lyon, Université Lyon 1, CNRS, UMR5208, Institut Camille Jordan

Risk aversion plays a significant and central role in investors’ decisions in the process of developing a portfolio.  In this portfolio optimization framework, we determine the portfolio that possesses the minimal risk by using a new geometrical method.  For this purpose, we elaborate an algorithm that enables us to compute any Euclidean distance to a standard simplex.  With this new approach, we can treat the case of portfolio optimization without short-selling in its entirety, and we also recover in geometrical terms the well-known results on portfolio optimization with allowed short-selling.  Then, we apply our results to determine which convex combination of the CAC 40 stocks possesses the lowest risk.  Thus, we not only obtain a very low risk compared to the index, but we also get a rate of return that is almost three times better than the one of the index.

  1. Markowitz H.  Portfolio Selection.  The Journal of Finance. 7 (1), 77–91 (1952).
  2. Sharpe W. F.  A Simplified Model for Portfolio Analysis.  Management Science. 9 (2), 277–293 (1963).
  3. Daníelsson J., Jorgensen B. N., de Vries C. G., Yang X.  Optimal portfolio allocation under the probabilistic VaR constraint and incentives for financial innovation.  Annals of Finance. 4, 345–367 (2008).
  4. Fontana C., Schweizer M.  Simplified mean-variance portfolio optimization.  Mathematics and Financial Economics. 6, 125–152 (2012).
  5. Ben Salah H., Chaouch M., Gannoun A., De Peretti C.  Mean and median-based nonparametric estimation of returns in mean-downside risk portfolio frontier.  Annals of Operations Research. 262 (1), 653–681 (2018).
  6. Ben Salah H.  Gestion des actifs financiers : de l'approche Classique à  la modélisation non paramétrique en estimation du DownSide Risk pour la constitution d'un portefeuille efficient.  Thèse De Doctorat Des l’Universités Lyon1 Et Tunis 1 (2015).
  7. Perrin S., Roncalli T.  Machine Learning Optimization Algorithms & Portfolio Allocation. Preprint arXiv:1909.10233 (2011).
  8. Bodnar T., Ivasiuk D., Parolya N., Schmid W.  Mean-variance efficiency of optimal power and logarithmic utility portfolios.  Mathematics and Financial Economics. 14, 675–698 (2020).
  9. Bachelier L.  Théorie de la spéculation.  Paris, Gauthier-Villars (1900).
  10. Rondepierre A.  Méthodes numériques pour l'optimisation non linéaire déterministe.  INSA de Toulouse (2017).
  11. Nagurney A.  Portfolio Optimization.  University of Massachusetts (2009).
  12. Moraux F.  Finance de marché.  Pearson Education France (2010).
  13. Poncet P., Portait R.  Finance de marché.  Dalloz, Paris (2014).
  14. Condat L.  Fast projection onto the simplex and the $l_1$ ball.  Mathematical Programming. 158, 575–585 (2016).
  15. Chen Y., Ye X.  Projection Onto A Simplex. Preprint arXiv:1101.6081 (2011).