The aim of this work is to propose a new numerical approach to image restoration and contrast enhancement based on a reaction-diffusion model (Gray–Scott model). For noise removal, a Lattice Boltzmann technique is used. This method is usually used in fluid dynamics experiments. Since pixels motion can be compared to fluids motion, the presented technique also indicates a good performance in processing noisy images. The efficiency and performance of the proposed algorithm are verified by several numerical experiments.
- Murray J.-D. Mathematical biology. Berlin, Springer (1989).
- Teuscher C., Adamatzky A. Proc. of the 2005 Workshop on Unconventional Computing From cellular Automata to Wetwar. Luniver Press Beckington (2005).
- Perona P., Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence. 12 (7), 629–639 (1990).
- Alvarez L., Lions P.-L., Morel J. M. Image Selective Smoothing and Edge Detection by Nonlinear Diffusion. II. SIAM Journal on Numerical Analysis. 29 (3), 845–866 (1992).
- Catté F., Lions P-L., Morel J.-M., Coll T. Image selective smoothing and edge detection by nonlinear diffusion. SIAM Journal on Numerical Analysis. 29 (1), 182–193 (1992).
- Morfu S. On some applications of diffusion processes for image processing. Physics Letters A. 373 (29), 2438–2444 (2009).
- Alaa K., Atounti M., Zirhem M. Image restoration and contrast enhancement based on a nonlinear reaction-diffusion mathematical model and divide & conquer technique. Mathematical Modeling and Computing. 8 (3), 549–559 (2021).
- Morfu S., Marquié P., Nofiélé B., Ginhac D. Chapter 3 – Nonlinear systems for image processing. Advances in Imaging and Electron Physics. 152, 79–151 (2008).
- Morfu S., Nofiele B., Marquié P. On the use of multistability for image processing. Physics Letters A. 367 (3), 192–198 (2007).
- Oussous M. A., Alaa N., Khouya Y. A. Anisotropic and nonlinear diffusion applied to image enhancement and edge detection. International Journal of Computer Applications in Technology. 49 (2), 122–133 (2014).
- Hardy J., Pomeau Y., de Pazzis O. Time evolution of a two-dimensional model system. I. Invariant states and time correlation functions. Journal of Mathematical Physics. 14 (12), 1746–1759 (1973).
- Chen S., Doolen G. D. Lattice Boltzmann method for fluid flows. Annual Review of Fluid Mechanics. 30 (1), 329–364 (1998).
- Wolf–Gladrow D. A. Lattice Gas Cellular Automata and Lattice Boltzmann Models. Springer–Verlag, Berlin–Heidelberg (2000).
- Shan X. Simulation of Rayleigh–Bénard convection using a lattice Boltzmann method. Physival Review E. 55 (3), 2780–2788 (1997).
- Ho J.-R., Kuo C.-P., Jiaung W.-S., Twu C.-J. Lattice Boltzmann scheme for hyperbolic heat conduction equation. Numerical Heat Transfer, Part B: Fundamentals. 41 (6), 591–607 (2002).
- Shi B., Deng B., Du R., Chen X. A new scheme for source term in LBGK model for convection-diffusion equation. Computers & Mathematics with Applications. 55 (7), 1568–1575 (2008).
- Chai Z., Zhao T. S. Lattice Boltzmann model for the convection-diffusion equation. Physical Review E. 87 (6), 063309 (2013).
- Chaabane R., Askri F., Nasrallah S. B. Analysis of two-dimensional transient conduction–radiation problems in an anisotropically scattering participating enclosure using the lattice Boltzmann method and the control volume finite element method. Computer Physics Communications. 182 (7), 1402–1413 (2011).
- Jawerth B., Lin P., Sinzinger E. Lattice Boltzmann Models for Anisotropic Diffusion of Images. Journal of Mathematical Imaging and Vision. 11, 231–237 (1999).
- Sun X., Wang Z., Chen G. Parallel active contour with Lattice Boltzmann scheme on modern GPU. 2021 19th IEEE International Conference on Image Processing. 1709–1712 (2012).
- Balla-Arabé S., Gao X. Image multi-thresholding by combining the lattice Boltzmann model and a localized level set algorithm. Neurocomputing. 93, 106–114 (2012).
- Chang Q., Yang T. A Lattice Boltzmann Method for Image Denoising. IEEE Transactions on Image Processing. 18 (12), 2797–2802 (2009).
- Chen J., Chai Z., Shi B., Zhang W. Lattice Boltzmann method for filtering and contour detection of the natural images. Computers & Mathematics with Applications. 68 (3), 257–268 (2014).
- Ambrosio L., Tortorelli V. M. Approximation of functional depending on jumps by elliptic functional via t-convergence. Communications on Pure and Applied Mathematics. 43 (8), 999–1036 (1990).
- Nomura A., Ichikawa M., Sianipar R. H., Miike H. Edge detection with reaction-diffusion equations having a local average threshold. Pattern Recognition and Image Analysis. 18 (2), 289–299 (2008).
- Witkin A., Kass M. Reaction-diffusion textures. ACM SIGGRAPH Computer Graphics. 25 (4), 299–308 (1991).
- Sanderson A. R., Johnson C. R., Kirby R. M., Yang L. Advanced reaction-diffusion models for texture synthesis. Journal of Graphics Tools. 11 (3), 47–71 (2006).
- Black M. J., Sapiro G., Marimont D. H., Heeger D. Robust anisotropic diffusion. IEEE Transactions on Image Processing. 7 (3), 421–432 (1998).