A new Lattice Boltzmann method for a Gray–Scott based model applied to image restoration and contrast enhancement

2022;
: pp. 187–202
https://doi.org/10.23939/mmc2022.02.187
Received: May 04, 2021
Revised: November 20, 2021
Accepted: November 22, 2021

Mathematical Modeling and Computing, Vol. 9, No. 2, pp. 187–202 (2022)

1
Laboratory LAMAI, Faculty of Science and Technology, Cadi Ayyad University
2
Laboratory LAMAI, Faculty of Science and Technology, Cadi Ayyad University
3
Computer, Networks, Mobility and Modeling laboratory (IR2M), Faculty of Sciences and Technics, Hassan First University of Settat
4
Laboratory MISI, Faculty of Sciences and Techniques, Hassan First University of Settat

The aim of this work is to propose a new numerical approach to image restoration and contrast enhancement based on a reaction-diffusion model (Gray–Scott model).  For noise removal, a Lattice Boltzmann technique is used.  This method is usually used in fluid dynamics experiments.  Since pixels motion can be compared to fluids motion, the presented technique also indicates a good performance in processing noisy images.  The efficiency and performance of the proposed algorithm are verified by several numerical experiments.

  1. Murray J.-D.  Mathematical biology.  Berlin, Springer (1989).
  2. Teuscher C., Adamatzky A.  Proc. of the 2005 Workshop on Unconventional Computing From cellular Automata to Wetwar.  Luniver Press Beckington (2005).
  3. Perona P., Malik J.  Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence. 12 (7), 629–639 (1990).
  4. Alvarez L., Lions P.-L., Morel J. M.  Image Selective Smoothing and Edge Detection by Nonlinear Diffusion. II.  SIAM Journal on Numerical Analysis. 29 (3), 845–866 (1992).
  5. Catté F., Lions P-L., Morel J.-M., Coll T.  Image selective smoothing and edge detection by nonlinear diffusion.  SIAM Journal on Numerical Analysis. 29 (1), 182–193 (1992).
  6. Morfu S.  On some applications of diffusion processes for image processing.  Physics Letters A. 373 (29), 2438–2444 (2009).
  7. Alaa K., Atounti M., Zirhem M.  Image restoration and contrast enhancement based on a nonlinear reaction-diffusion mathematical model and divide & conquer technique.  Mathematical Modeling and Computing. 8 (3), 549–559 (2021).
  8. Morfu S., Marquié P., Nofiélé B., Ginhac D.  Chapter 3 – Nonlinear systems for image processing.  Advances in Imaging and Electron Physics. 152, 79–151 (2008).
  9. Morfu S., Nofiele B., Marquié P.  On the use of multistability for image processing.  Physics Letters A. 367 (3), 192–198 (2007).
  10. Oussous M. A., Alaa N., Khouya Y. A.  Anisotropic and nonlinear diffusion applied to image enhancement and edge detection.  International Journal of Computer Applications in Technology. 49 (2), 122–133 (2014).
  11. Hardy J., Pomeau Y., de Pazzis O.  Time evolution of a two-dimensional model system. I. Invariant states and time correlation functions.  Journal of Mathematical Physics. 14 (12), 1746–1759 (1973).
  12. Chen S., Doolen G. D.  Lattice Boltzmann method for fluid flows.  Annual Review of Fluid Mechanics. 30 (1), 329–364 (1998).
  13. Wolf–Gladrow D. A.  Lattice Gas Cellular Automata and Lattice Boltzmann Models.  Springer–Verlag, Berlin–Heidelberg (2000).
  14. Shan X.  Simulation of Rayleigh–Bénard convection using a lattice Boltzmann method.  Physival Review E. 55 (3), 2780–2788 (1997).
  15. Ho J.-R., Kuo C.-P., Jiaung W.-S., Twu C.-J.  Lattice Boltzmann scheme for hyperbolic heat conduction equation.  Numerical Heat Transfer, Part B: Fundamentals. 41 (6), 591–607 (2002).
  16. Shi B., Deng B., Du R., Chen X.  A new scheme for source term in LBGK model for convection-diffusion equation.  Computers & Mathematics with Applications. 55 (7), 1568–1575 (2008).
  17. Chai Z., Zhao T. S.  Lattice Boltzmann model for the convection-diffusion equation.  Physical Review E. 87 (6), 063309 (2013).
  18. Chaabane R., Askri F., Nasrallah S. B.  Analysis of two-dimensional transient conduction–radiation problems in an anisotropically scattering participating enclosure using the lattice Boltzmann method and the control volume finite element method.  Computer Physics Communications. 182 (7), 1402–1413 (2011).
  19. Jawerth B., Lin P., Sinzinger E.  Lattice Boltzmann Models for Anisotropic Diffusion of Images.  Journal of Mathematical Imaging and Vision. 11, 231–237 (1999).
  20. Sun X., Wang Z., Chen G.  Parallel active contour with Lattice Boltzmann scheme on modern GPU.  2021 19th IEEE International Conference on Image Processing. 1709–1712 (2012).
  21. Balla-Arabé S., Gao X.  Image multi-thresholding by combining the lattice Boltzmann model and a localized level set algorithm.  Neurocomputing. 93, 106–114 (2012).
  22. Chang Q., Yang T.  A Lattice Boltzmann Method for Image Denoising.  IEEE Transactions on Image Processing. 18 (12), 2797–2802 (2009).
  23. Chen J., Chai Z., Shi B., Zhang W.  Lattice Boltzmann method for filtering and contour detection of the natural images.  Computers & Mathematics with Applications. 68 (3), 257–268 (2014).
  24. Ambrosio L., Tortorelli V. M.  Approximation of functional depending on jumps by elliptic functional via t-convergence.  Communications on Pure and Applied Mathematics. 43 (8), 999–1036 (1990).
  25. Nomura A., Ichikawa M., Sianipar R. H., Miike H.  Edge detection with reaction-diffusion equations having a local average threshold.  Pattern Recognition and Image Analysis. 18 (2), 289–299 (2008).
  26. Witkin A., Kass M.  Reaction-diffusion textures.  ACM SIGGRAPH Computer Graphics. 25 (4), 299–308 (1991).
  27. Sanderson A. R., Johnson C. R., Kirby R. M., Yang L.  Advanced reaction-diffusion models for texture synthesis.  Journal of Graphics Tools. 11 (3), 47–71 (2006).
  28. Black M. J., Sapiro G., Marimont D. H., Heeger D.  Robust anisotropic diffusion.  IEEE Transactions on Image Processing. 7 (3), 421–432 (1998).