On convergence of function F4(1,2;2,2;z1,z2) expansion into a branched continued fraction

2022;
: pp. 767–778
https://doi.org/10.23939/mmc2022.03.767
Received: February 02, 2022
Revised: September 15, 2022
Accepted: September 16, 2022

Mathematical Modeling and Computing, Vol. 9, No. 3, pp. 767–778 (2022)

1
Lviv Polytechnic National University
2
Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, National Academy of Sciences of Ukraine
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University

In the paper, the possibility of the Appell hypergeometric function ${F_4}(1,2; 2,2;{z_1},{z_2})$ approximation by a branched continued fraction of a special form is analysed.  The correspondence of the constructed branched continued fraction to the Appell hypergeometric function $F_4$ is proved.  The convergence of the obtained branched continued fraction in some polycircular domain of two-dimensional complex space is established, and numerical experiments are carried out.  The results of the calculations confirmed the efficiency of approximating the Appell hypergeometric function ${F_4}(1,2;2,2;{z_1},{z_2})$ by a branched continued fraction of special form and illustrated the hypothesis of the existence of a wider domain of convergence of the obtained  expansion.

  1. Exton H.  Multiple hypergeometric functions and applications.  New York – Sydney – Toronto, Chichester, Ellis Horwood (1976).
  2. Huber T., Maitre D.  HypExp 2, Expanding Hypergeometric Functions about Half-Integer Parameters.  Computer Physics Communications.  178 (10), 755–776 (2008).
  3. Bytev V. V., Kalmykov M. Yu., Kniehl B. A.  Differential reduction of generalized hypergeometric functions from Feynman diagrams: One-variable case.  Nuclear Physics B.  836 (3), 129–170 (2010).
  4. Feng T.-F., Chang C.-H., Chen J.-B., Gu Z.-H., Zhang H.-B.  Evaluating Feynman integrals by the hypergeometry.  Nuclear Physics B.  927, 516–549 (2018).
  5. Bateman H., Erdelyi A.  Higher Transcendental Functions, Volume I.  New York, McGraw-Hill Book Co., Inc. (1953).
  6. Luke Y.  Special mathematical functions and their approximation.  Moscow, Mir (1980), (in Russian).
  7. Kalmykov M. Yu., Kniehl B. A.  Mellin–Barnes representations of Feynman diagrams, linear systems of differential equations, and polynomial solutions.  Phys. Lett. B. 714 (1), 103–109 (2012).
  8. Jones William B., Thron W. J.  Continued fractions. Analytic theory and applications (Encyclopedia of Mathematics and its Applications, Series Number 11).  Cambridge, Cambridge University Press (2009).
  9. Cuyt A., Petersen V. B., Vendonk B., Waadeland H., Jones W. B.  Handbook of Continued Fractions for Special Functions.  Berlin, Springer (2008).
  10. Lorentzen L., Waadeland H.  Continued Fractions with Application, Studies in Computational Mathematics, Volume 3.  Amsterdam, North-Holland (1992).
  11. Appell P., Kampe de Feriet J.  Fonctions hypergeometriques et hyperspheriques. Polinomes d’Hermite.  Paris, Couthier-Villars (1926), (in French).
  12. Bodnarchuk P. І., Skorobohat’ko V. Ya.  Branched Continued Fractions and Their Applications.  Kyiv, Naukova dumka (1974), (in Ukrainian).
  13. Bodnar D. I.  The multivariable C-fractions.  Mat. Metody Fiz. Mekh. Polya.  39 (2), 39–46 (1996), (in Ukrainian).
  14. Bodnar D. I.  Branched continued fractions.  Kyiv, Naukova dumka (1986), (in Russian).
  15. Manziy O. S., Hladun V. R., Ventyk L. S.  The algorithms of constructing the continued fractions for any rations of the hypergeometric Gaussian functions.  Mathematical Modeling and Computing.  4 (1), 48–58 (2017).
  16. Hoyenko N., Antonova T., Rakintsev S.  Approximation for ratios of Lauricella–Saran fuctions $F_s$ with real parameters by a branched continued fractions.  Math. Bul. Shevchenko Sci. Soc. 8, 28–42 (2011), (in Ukrainian).
  17. Antonova T., Dmytryshyn R., Kravtsiv V.  Branched Continued Fraction Expansions of Horn’s Hypergeometric Function $H_3$ Ratios.  Mathematics.  9 (2), 148 (2021).
  18. Hoyenko N. P., Hladun V. R., Manzij O. S.  On the infinite remains of the Norlund branched continued fraction for Appell hypergeometric functions.  Carpathian Mathematical Publications.  6 (1), 11–25 (2014).
  19. Hoyenko N. P.  Correspondence principle and convergence of sequences of analytic functions of several variables.  Math. Bull. Shevchenko Sci. Soc.  4, 42–48 (2007), (in Ukrainian).
  20. Hladun V. R., Hoyenko N. P., Ventyk L. S., Manziy O. S.  About the calculation of hypergeometric function ${F_4}(1,2;2,2;{z_1},{z_2})$ by the branched continued fraction of a special kind.  Physico-mathematical modeling and informational technologies.  32,  86–90 (2021), (in Ukrainian).