In this work we establish the existence of local stable and local unstable manifolds for nonlinear boundary Cauchy problems. Moreover, we illustrate our results by an application to a non-autonomous Fisher–Kolmogorov equation.
- Boulite S., Maniar L., Moussi M. Wellposedness and asymptotic behaviour of nonautonomous boundary Cauchy problems. Forum Mathematicum. 18 (4), 611–638 (2006).
- Doan T. S., Moussi M., Siegmund S. Integral Manifolds of Nonautonomous Boundary Cauchy Problems. Journal of Nonlinear Evolution Equations and Applications. 2012 (1), 1–15 (2012).
- Jerroudi A., Moussi M. Invariant centre manifolds of non-autonomous boundary Cauchy problems (under review).
- Moussi M. Pullback Attractors of Nonautonomous Boundary Cauchy Problems. Nonlinear Dynamics and Systems Theory. 14 (4), 383–394 (2014).
- Kellermann H. Linear evolution equations with time dependent domain. Semesterbericht Funktionalanalysis Tübingen, Wintersemester. 16–44 (1986–1987).
- Lan N. T. On non-autonomous functional differential equations. Journal of Mathematical Analysis and Applications. 239 (1), 158–174 (1999).
- Jerroudi A., Moussi M. Stability and local attractivity for nonautonomous boundary Cauchy problems. Boletim da Sociedade Paranaense de Matemática (in press).
- Minh N. V., Räbiger F., Schnaubelt R. Exponential stability, exponential expansiveness and exponential dichotomy of evolution equations on the half line. Integral Equations and Operator Theory. 32 (3), 332–353 (1998).
- Huy N. T. Exponential dichotomy of evolution equations and admissibility of function spaces on a half-line. Journal of Functional Analysis. 235 (1), 330–354 (2006).
- Schnaubelt R. Sufficient conditions for exponential stability and dichotomy of evolution equations. Forum Math. 11 (5), 543–566 (1999).
- Schnaubelt R. Asymptotic behaviour of parabolic nonautonomous evolution equations. In: Functional Analytic Methods for Evolution Equations, 401–472. Springer Berlin Heidelberg, Berlin, Heidelberg (2004).
- Greiner G. Perturbing the boundary conditions of a generator. Houston Journal of Mathematics. 13 (2), 213–229 (1987).
- Moussi M. Well-posdness and asymptotic behavior of non-autonomous boundary Cauchy problems. Ph.D. thesis, Faculty of science, Oujda (2003).
- Kato T. Linear evolution equations of "hyperbolic" type. J. Fac. Sci., Univ. Tokyo, Sect. I A. 17, 241–258 (1970).
- Daleckii J. L., Krein M. G. Stability of solutions of differential equations in Banach space. Translations of Mathematical Monographs. Providence, Rhode Island (1994).
- Brezis H. Analyse Fonctionnelle: Théorie et Applications. Masson (1987).
- Engel K. J., Nagel R. One-Parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics. 194, Springer–Verlag, New York (2000).