Aim. Analysis modern methods surveying of processing large-scale plans. Method. Creating large-scale plans is an important task in mapping Ukraine because the existing topographic plans eventually need to be updated because it no longer meets the current state of the area. The scope of large-scale plans are diverse: the development of general plans of cities and rural areas, landscaping and engineering training areas of cities and towns, drafting drainage and irrigation of agricultural land cadastre settlements and so on. So important is carrying out works on updating and creating topographical plans that will be used for the purposes referred to above. In addition, poor quality cadastral information in databases, created over the years, leading to problems with surveying the neighboring areas. Therefore, the correction of these errors is also urgent task. In order to determine the best option to address these issues, the authors bring characteristics of geodetic methods and techniques of remote sensing to handle large-scale plans. The analysis must conclude that it is the shortcomings of traditional means of removal (receiving data using space satellites, manned aerial vehicles and total stations) were the preconditions for the application of UAVs in topographic purposes. Results. Based on the analysis methods of removal in order to create large-scale plans were marked advantages and disadvantages of each method. Consequently, it is concluded that in contrast to other methods of remote sensing and geodetic methods, the application of UAV becomes possible to efficiently handle large-scale plans (1: 2000, 1:1000, 1:500) with appropriate accuracy of the coordinates. Scientific novelty. The study made analysis of the technologies of modern methods of removal, and on the basis of its conclusions on an optimized method of processing large-scale plans of using UAVs. The practical significance. Justification possibility of using images obtained from the UAVs aerosurveying results small areas (8–10 km2 to create the plans at 1: 2000, 1:1000, 1:500. The main advantage of UAVs is that the aerosurveying original data can also be used for the acquisition of spatial information in remote areas, monitoring potentially dangerous to human life objects inventory of land settlements.
1. Babiy V. V. Vykorystannia bezpilotnykh litalnykh aparativ v heodezii ta kartohrafii [The use of drones in Geodesy and Cartography] p. 332, http://www.readera.org/other/vyekoryestannja-bezpilotnyekh-litalnyekh-ap...
2. Vovk A., Hlotov V., Hunina A., Malitskyy A., Tretyak K., Tserklevych A. Analiz rezul'tativ dlya stvorennya ortofotoplaniv ta tsyfrovykh modeley rel'yefu z zastosuvannyam BPLA TRIMBLE UX-5 [Analysis of the results of the use uav trimble ux-5 for creation of orthophotomaps and digital model of relief]. Mizhvid. Nauk.tekhn. zb."Geodeziya, kartohrafiya i aerofotoznimannya" [Geodesy, Cartography and Arial Photography]. Lviv, 2015, no. 81, pp. 89–102.
3. Vosvulo Shch. Shch., Kotlyar A.M. Doslidzhennia mozhlyvosti velykomasshtabnoho kartohrafuvannia mistsevosti z vykorystanniam bezpilotnykh aviatsiinykh system [Research opportunities for large-scale mapping of areas with the use of unmanned aircraft systems], p. 310, http://www.readera.org/other/vyekoryestannja-bezpilotnyekh-litalnyekh-ap...
4. Haletskyi V., Hlotov V., Kolesnichenko V., Prokhorchuk O., Tserklevych A. Analiz eksperymentalnykh robit z stvorennia velykomasshtabnykh planiv silskykh naselenykh punktiv pry zastosuvanni BPLA. [Analysis of experimental work on the creation of large-scale plans of rural areas in the application of UAVs] Geodesy, cartography and aerial photography, no. 76, 2012, pp. 85–93.
5. Zinchenko О. N. Bespilotnye letatel’nye apparaty: primenenie v celjah ajerofotosjemki dlja kartografirovanija (chast’ 1) [Unmanned aerial vehicles : the use aerial photographs in order to map ( part 1 )], “Racurs”, Моscow, 2011, pp. 1–12.
6. Karmanov D. V., Matveev Ju. N. Tehnologija sozdanija ortofotoplanov po ajerofotosnimkam, poluchennym s pomoshh'ju malyh bespilotnyh letatel'nyh apparatov [Technology for creating orthophotos from aerial photographs obtained with the help of small unmanned aerial vehicles], Information and Space. 2007, no 4, pp. 61–64.
7. Kozub A. M., Suvorova N. O., Cherniavskyi V. M. Analiz zasobiv zboru informatsii dlia heohrafichnykh informatsiinykh system. [Analysis of gathering information for geographic information systems], Systemy ozbroiennia i viiskova tekhnika [Weapons systems and military equipment], 2011, no. 3(27), ISSN 1997-9568, pp. 42–47.
8. Lupjan E. A, Mazurov A. A., Flitman E. V. Sputnikovyj monitoring lesnyh pozharov v Rossii. Itogi. Problemy. Perspektivy. [Satellite monitoring of forest fires in Russia . Results . Problems. Prospects.], analiticheskij obzor IOA, [Analytical review of the IRA]. 2003, no. 68, 224 p.
9. Mitin M. D., Nikol'skij D. B. Sovremennye tendencii razvitija otrasli bespilotnyh letatel'nyh apparatov [Current trends in the sector of unmanned aerial vehicles ],Geomatika, Dannye distancionnogo zondirovanija [Remote sensing data], no. 4, 2013, pp. 27–31.
10. Rubcova N. Je. Obrabotka dannyh BPLA v programme UASMaster [UAV data processing program UASMaster], Geomatika, no. 1, 2014, pр. 34–44
11. Sechin A. Ju., Drakin M. A., Kiseleva A. S. Bespilotnye letatel'nye apparaty: primenenie v celjah ajerosjemki dlja kartografirovanija (chast' 2) [Unmanned aerial vehicles: the application in order for aerial mapping (part 2)], //http://www.racurs.ru/?page=699.
12. Stankevych S. A, Vasko A.V. Zastosuvannia suchasnykh tekhnolohii aerokosmichnoho znimannia v ahrarnii sferi [Application of modern technologies Aerospace removal in agriculture.]. Naukovi aspekty heodezii, zemleustroiu ta informatsiinykh tekhnolohii: materialy nauk.-prakt. konfer.[ Scientific aspects of surveying, land management and information technology materials and practical nauk. . konfer]. 2011, pp. 44–50.
13. Cepljaeva T. P., Pozdysheva E.M., Poshtarenko A.G. Analiz primenenija bespilotnyh kompleksov [Analysis of application UAS], Otkrytye informacionnye i komp'juternye integrirovannye tehnologii. [Open Consumer Information and Computer technologies]. 2008, no. 39, pp. 149–154.
14. Tsytsukhov D. A., Boiko O. L. Vykonannia topohrafo-heodezychnykh robit z vykorystanniam bezpilotnykh litalnykh aparativ [Up survey work using drones] Druha vseukrainska naukovo-tekhnichna konferentsiia studentiv, aspirantiv i molodykh uchenykh ,"molod: nauka ta innovatsii",[ The Second All-Ukrainian scientific-technical conference of students and young scientists "Youth : science and innovation"], 02-03.12.2014., Proceedings Volume 5, Section 6 - Geodesy and land management, http://science.nmu.org.ua/ua/conferences/molod-nauka-ta-innov/pdf-2014/2...
15. Shevenja M. S. Ajerofotosjemka s primeneniem bespilotnyh letatel'nyh apparatov (BPLA)[ Shevenya MS Aerial using unmanned aerial vehicles (UAVs )], Geodezija i kartografija [Geodesy and Cartography], no. 1, 2013, http://www.balt-agp.ru/services/aerofoto.htm
16. Shumakov F. T Suputnykova heodeziia, Konspekt lektsii z dystsypliny "Suputnykova heodeziia" (dlia studentiv 4 kursu dennoi formy navchannia, spetsialnosti 7.070900 "Heoinformatsiini systemy ta tekhnolohii")[ Satellite geodesy, lecture on the subject "Satellite Geodesy" ( for students 4-year full-time students , specialty 7.070900 "Geographic Information Systems and Technologies")], 2009, p. 88.
17. Bendea H., Boccardo P., Dequal S., Giulio Tonolo F., Marenchino D., Piras M. Low cost UAV for postdisaster assessment. In Proceedings of The XXI Congress of the International Society for Photogrammetry and Remote Sensing, Beijing, China, Vol. XXXVII. Part B8, 2008, pp. 1373–1380.
18. Maza I., Caballero F., Capitán J., Martínez-de-Dios, J. R., Ollero A. Experimental results in multi-UAV coordination for disaster management and civil security applications. Journal of intelligent & robotic systems, 2011, 61(1–4), pp. 563–585.
https://doi.org/10.1007/s10846-010-9497-5
19. Meier G., Frank S. Dokumentation und Überwachung einer Rutschung mittels UAV (Unmanned Aerial Vehicle), Geodäsie/Vermessung, Geomatik Schweiz, 2014, pp. 449–452.
20. Rinaudo F., Chiabrando F., Lingua A. M., and Spanò, A. T., 2012. Archaeological site monitoring: UAV photogrammetry can be an answer. The International archives of the photogrammetry, Remote sensing and spatial information sciences, 39(B5), pp. 583–588.
https://doi.org/10.5194/isprsarchives-XXXIX-B5-583-2012
21. Watabe Y. and Sassa S., 2009. An Effective Investigation of Tidal Flat Sedimentation by Means of UAV and MASW. Journal of Japan Society of Civil Engineers, Ser. B2 (Coastal Engineering), 65(1), pp. 1441–1445.
22. Nakano T., Kamiya I. , Tobita M. , Iwahashi J., Nakajima H., Landform monitoring in active volcano by UAV and sfm-mvs technique. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-8, 2014 ISPRS Technical Commission VIII Symposium, 09–12 December 2014, Hyderabad, India, pp. 71–75.
https://doi.org/10.5194/isprsarchives-XL-8-71-2014
23. Normatyvno-pravovi akty v sferi heodeziyi ta kartohrafiyi, Osnovni polozhennya stvorennya topohrafichnykh planiv masshtabiv 1:5000, 1:2000, 1:1000 ta 1:500. [Normative legal acts in the field of geodesy and cartography main provisions creating topographical plans scale 1: 5000, 1: 2000, 1: 1000 and 1: 500].