FAST TRANSFORMS OF FOURIER CLASS IN OFDM TECHNOLOGY OF WIRELESS TRANSMISSION SYSTEMS

2019;
: 52-57
https://doi.org/10.23939/ujit2019.01.052
Received: October 13, 2019
Accepted: November 20, 2019

Цитування за ДСТУ: Процько І. О. Швидкі перетворення класу Фур'є в OFDM технології систем безпровідної передачі інформації. Український журнал інформаційних технологій. 2019, т. 1, № 1. С. 52–57.

Citation APA: Prots'ko, I. O. (2019). Fast transforms of fourier class in OFDM technology of wireless transmission systems. Ukrainian Journal of Information Technology, 1(1), 52–57. https://doi.org/10.23939/ujit2019.01.052

Authors:
1
Lviv Polytechnic National University, Lviv, Ukraine

The ma­in mo­di­fi­ca­ti­ons and stan­dards of OFDM techno­logy that pro­vi­de high qua­lity com­mu­ni­ca­ti­on in mul­ti­path transmis­si­on of the transmit­ted sig­nal are highlighted. It is analyzed in the struc­tu­re of the transmit­ter of the com­mu­ni­ca­ti­on system ba­sed on OFDM techno­logy of exe­cu­ti­on of fast transforms of Fou­ri­er class. The ortho­go­nal freq­uency di­vi­si­on mul­tip­le­xing / de­mul­tip­le­xing functi­on is as­sig­ned to the fast com­pu­ter of transform, and the pre­co­der is used to re­du­ce the high pe­ak fac­tor in­he­rent in OFDM techno­logy. The ba­sic ele­ments and req­ui­re­ments for the com­pu­ters that per­form fast transforms in the struc­tu­ral sche­me of imple­men­ta­ti­on of OFDM techno­logy are de­ter­mi­ned. The re­la­ti­on bet­we­en the num­ber of sub­car­ri­ers and the si­ze of ba­sic transform of OFDM techno­logy is con­si­de­red. The pos­si­bi­lity of using Fou­ri­er, Hartley transforms and co­si­ne transforms in the pre­co­der has be­en fo­und out. The ba­sic sta­ges of the met­hod of construc­ting the struc­tu­ral sche­me of fast Fou­ri­er transforms ba­sed on cyclic con­vo­lu­ti­ons are for­mu­la­ted. The iden­ti­fi­ed steps inclu­de: bu­il­ding a has­hing ar­ray, de­ter­mi­ning a simpli­fi­ed has­hing ar­ray supple­men­ted by an ar­ray of signs, construc­ting and analyzing a ge­ne­ra­li­zed struc­tu­re of the ba­sis mat­rix, bu­il­ding blocks of in­put da­ta in­teg­ra­ti­on, bu­il­ding blocks of cyclic con­vo­lu­ti­ons, bu­il­ding blocks of com­bi­ning re­sults of cyclic con­vo­lu­ti­ons who­se out­puts are re­sults of di­rect/in­di­rect transforms of Fou­ri­er class ba­sed on cyclic con­vo­lu­ti­ons. The sta­ges of construc­ting and analyzing the ge­ne­ra­li­zed struc­tu­re of the ba­sic mat­rix are per­for­med on the ba­sis of a has­hing ar­ray, a simpli­fi­ed has­hing ar­ray, and an ar­ray of signs. The ta­bu­lar as­signment of the block-cyclic struc­tu­re of the ba­sic mat­rix spe­ci­fi­es the co­or­di­na­tes of the pla­ce­ment of the sign and the simpli­fi­ed val­ue of the first ele­ments of the cyclic sub­mat­ri­ces. An example for the ішяу N=16 of de­ter­mi­ning the has­hing ar­ray, the simpli­fi­ed has­hing ar­ray and the sign ar­ray, the block-cyclic struc­tu­re of the ba­sis mat­rix used in construc­ting the struc­tu­ral sche­me of the com­pu­ter is con­si­de­red. An example of a struc­tu­ral sche­me of a DHT-I of si­ze N=20, con­ta­ining fo­ur blocks of exe­cu­ti­on of a 4-po­int cyclic con­vo­lu­ti­on. The techniq­ue of construc­ting the struc­tu­re sche­me of com­pu­ters using cyclic con­vo­lu­ti­on blocks can be used to ef­fi­ci­ent per­form discre­te transforms of Fou­ri­er class in OFDM-ba­sed com­mu­ni­ca­ti­on systems. The pos­si­bi­lity of using struc­tu­ral construc­ti­on techniq­ue to au­to­ma­te the pro­cess of construc­ting struc­tu­ral sche­mes the transforms of Fou­ri­er class ba­sed on cyclic con­vo­lu­ti­ons has be­en es­tab­lis­hed.

[1]     Abo­ul-Da­hab, Mo­ha­med A., Hag­ras, Esam A. A. A., & El­ha­se­eb, Ah­mad A. (2013). PAPR Re­duc­ti­on Ba­sed on DFT Pre­co­ding for OFDM Sig­nals. In­ter­na­ti­onal Jo­ur­nal of Fu­tu­re Com­pu­ter and Com­mu­ni­ca­ti­on, 2(4), 325–328. https://doi.org/10.7763/IJFCC.2013.V2.177

[2]     Ba­ig, I., & Je­oti, V. (2010). DCT pre­co­ded SLM techniq­ue for PARP re­duc­ti­on in OFDM system. In­ter­na­ti­onal Con­fe­ren­ce on In­tel­li­gent and Ad­van­ced Systems, Ma­ni­la, Phi­lip­pi­nes, Ju­ne 15–17. https://doi.org/10.1109/ICIAS.2010.5716107

[3]     Cruz-Rol­dan, F., Domıngu­ez-Ji­me­nez, M. E., San­sig­re-Vi­dal, G., Amo-Lo­pez, P., Blan­co-Ve­las­co, M., & Bra­vo-San­tos, A. (2012). On the use of discre­te co­si­ne transforms for mul­ti­car­ri­er com­mu­ni­ca­ti­ons. IEEE Trans. Sig­nal Pro­cess, 60(11), (pp. 6085–6090).

[4]     Hrytsiuk, Yu. I., & Nemova, E. A. (2018). Peculiarities of Formulation of Requirements to the Software. Scientific Bulletin of UNFU, 28(7), 135–148. https://doi.org/10.15421/40280727.

[5]     Hrytsiuk, Yu. I., & Zhabych, M. R. (2018). Risk Management of Implementation of Program Projects. Scientific Bulletin of UNFU, 28(1), 150–162. https://doi.org/10.15421/40280130

[6]     Mandyam, G. D. (2004). Si­nu­so­idal transforms in OFDM systems. IEEE Trans. Bro­ad­cast, 50(2), 172–184.

[7]     McClel­lan, J. H., & Ra­der, C. M. (1979). Num­ber The­ory in Di­gi­tal Sig­nal Pro­ces­sing. Pren­ti­ce-Hall, Engle­wo­od Cliffs, N. J.

[8]     Mo­ha­mad, M., Nilsson, R., & van de Be­ek J. (2018). A No­vel Transmit­ter Archi­tec­tu­re for Spectrally-Pre­co­ded OFDM. IEEE Tran­sac­ti­ons on Cir­cu­its and Systems I: Re­gu­lar Pa­pers, 65(8), (pp. 2592–2605).

[9]     Myung, H. G., & Go­od­man, D. J. (2008). Single Car­ri­er FDMA: A New Air In­ter­fa­ce for Long Term Evo­lu­ti­on. John Wi­ley & Sons.

[10]  OFDM. (2019). Imple­men­ting OFDM Mo­du­la­ti­on and De­mo­du­la­ti­on. Ret­ri­eved from: https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-examples/design-software/vhdl/vhd-cyclic-prefix-insertion-ofdm.html

[11]  Protsko, I. (2013). Al­go­rithm of Ef­fi­ci­ent Com­pu­ta­ti­on of DCT I-IV Using Cyclic Con­vo­lu­ti­ons. In­ter­na­ti­onal Jo­ur­nal of Cir­cu­its, Systems and Sig­nal Pro­ces­sing, 7(1), 1–9.

[12]  Protsko, I. (2014). Al­go­rithm of ef­fi­ci­ent com­pu­ta­ti­on of ge­ne­ra­li­zed discre­te Hartley transform ba­sed on cyclic con­vo­lu­ti­ons. IET Sig­nal Pro­ces­sing, 8(4), 301–308.

[13]  Roh­ling, H. (2011). OFDM Con­cepts for Fu­tu­re Com­mu­ni­ca­ti­on Systems. Ber­lin, He­idel­berg: Sprin­ger-Ver­lag.

[14]  Sem­bi­ring, Z., Ma­lek, M. F. A., & Ra­him, H. (2011). Low Comple­xity OFDM Mo­du­la­tor and De­mo­du­la­tor Ba­sed on Discre­te Hartley Transform. Pro­ce­edings of Fifth Asia In­ter­na­ti­onal Con­fe­ren­ce Mo­del­ling Sympo­si­um (AMS), Ma­ni­la, Phi­lip­pi­nes, (pp. 252–256).

[15]  Sha­ri­fi, A. A. (2019). Discre­te Hartley mat­rix transform pre­co­ding-ba­sed OFDM system to re­du­ce the high PAPR. ICT Express, 5(2), 100–103. https://doi.org/10.1016/j.icte.2018.07.001

[16]  Tan, P., & Be­au­li­eu, N. C. (2006). A com­pa­ri­son of DCT-ba­sed OFDM and DFT-ba­sed OFDM in freq­uency offset and fa­ding chan­nels. IEEE Trans.Com­mun, 54(11), (pp. 2113–2125).

[17]  Vishnevskiy, V. M., Lyak­hov, A. I., Portnoy, S. L., & Shakhno­vich, I. V. (2005). Shi­ro­ko­po­losnyye bespro­vodnyye se­ti pe­re­dac­hi in­for­mat­sii. Mos­cow: Pub­lis­hing hou­se Tekhnos­fe­ra. [In Rus­si­an]