REFINING EXPERT BASED EVALUATION ON THE BASIS OF A LIMITED QUANTITY OF DATA

2019;
: 58-66
https://doi.org/10.23939/ujit2019.01.058
Received: October 27, 2019
Accepted: November 20, 2019

Цитування за ДСТУ: Грицюк Ю. І., Фернеза О. Р. Уточнення експертних оцінок на підставі обмеженого обсягу даних. Український журнал інформаційних технологій. 2019, т. 1, № 1. С. 58–66.

Citation APA: Hrytsiuk, Yu. I., & Ferneza, O. R. (2019). Refining expert based evaluation on the basis of a limited quantity of data. Ukrainian Journal of Information Technology, 1(1), 58–66. https://doi.org/10.23939/ujit2019.01.058

1
Lviv Polytechnic National University, Lviv, Ukraine
2
Lviv Polytechnic National University

A techniq­ue has be­en de­ve­lo­ped to re­fi­ne ex­pert ba­sed eval­ua­ti­on of the pro­ba­bi­lity distri­bu­ti­on pa­ra­me­ter of a ran­dom va­ri­ab­le ba­sed on a li­mi­ted amo­unt of sta­tis­ti­cal da­ta. This ma­de it pos­sib­le to iden­tify the most in­for­ma­ti­ve da­ta transmis­si­on chan­nel (the most qua­li­fi­ed ex­pert) and get its re­li­ab­le as­sessment. It has be­en es­tab­lis­hed that the analysis and pro­ces­sing of a li­mi­ted amo­unt of da­ta is car­ri­ed out using well-known techniq­ues in pro­ba­bi­lity the­ory and mat­he­ma­ti­cal sta­tis­tics, whe­re sig­ni­fi­cant the­ore­ti­cal and prac­ti­cal ex­pe­ri­en­ce has be­en ac­cu­mu­la­ted. A mat­he­ma­ti­cal mo­del that descri­bes the sta­te of an ob­ject, pro­cess, or phe­no­me­non is pre­sen­ted as a po­int es­ti­ma­te of the pro­ba­bi­lity distri­bu­ti­on pa­ra­me­ter of a ran­dom va­ri­ab­le, the val­ue of which is ob­ta­ined on the ba­sis of a small sample of da­ta. The mo­dern appro­ac­hes to the sta­tis­ti­cal es­ti­ma­ti­on of a ran­dom va­ri­ab­le are analyzed, the most com­mon of which is the Ba­ye­si­an appro­ach. It is es­tab­lis­hed that the most sig­ni­fi­cant mo­ment of the Ba­ye­si­an es­ti­ma­ti­on of the unknown pa­ra­me­ter of the pro­ba­bi­lity distri­bu­ti­on of a ran­dom va­ri­ab­le is the ap­po­intment of a cer­ta­in functi­on of the a pri­ori den­sity of its distri­bu­ti­on. This functi­on sho­uld cor­res­pond to the ava­ilab­le pre­li­mi­nary in­for­ma­ti­on on the sha­pe of the a pri­ori pro­ba­bi­lity distri­bu­ti­on of this qu­an­tity.

The tra­di­ti­onal appro­ach to iden­tif­ying the most in­for­ma­ti­ve chan­nel for transmit­ting da­ta on the sta­te of an ob­ject, the co­ur­se of a pro­cess or phe­no­me­non, and cut­ting off ot­hers is less re­li­ab­le. This is car­ri­ed out using the so-cal­led mec­ha­nism of re­du­cers of deg­re­es of fre­edom. Its ma­in di­sad­van­ta­ge is that in the cut-off da­ta transmis­si­on chan­nels, the­re may be so­me use­ful in­for­ma­ti­on that is not in­vol­ved in the de­ve­lop­ment of an ag­re­ed so­lu­ti­on. The­re­fo­re, it is ne­ces­sary to intro­du­ce mec­ha­nisms of discri­mi­na­tors of deg­re­es of fre­edom. They al­low all da­ta transmis­si­on chan­nels to par­ti­ci­pa­te in the de­ci­si­on-ma­king pro­cess in terms of im­por­tan­ce, which cor­res­ponds to the gre­atest deg­ree of the­ir in­for­ma­ti­on con­tent in the cur­rent sit­ua­ti­on. An il­lustra­ti­ve example of the appli­ca­ti­on of the con­si­de­red met­hods of ave­ra­ging da­ta is shown, which ref­lects the re­sults of cal­cu­la­ti­ons by ite­ra­ti­ons using the imple­men­ta­ti­on mec­ha­nisms of both re­du­cers and discri­mi­na­tors of deg­re­es of fre­edom. The­se mec­ha­nisms ref­lect the fe­atu­res of the imple­men­ta­ti­on of ite­ra­ti­ve al­go­rithms that are cha­rac­te­ris­tic of both met­hods of mat­he­ma­ti­cal sta­tis­tics and met­hods of a syner­ge­tic system of ave­ra­ging da­ta.

[1]     Aizer­man, M. A., Bra­ver­man, E. M., & Ro­zo­no­er, L. I. (1970). The met­hod of po­ten­ti­al functi­ons in mac­hi­ne le­ar­ning the­ory. Mos­cow: Sci­en­ce. 384 p. [In Rus­si­an].

[2]     Bakhrus­hin, V. E. (2006). Da­ta Analysis: a tu­to­ri­al. Za­po­rizhzhia: PG "Hu­ma­ni­ti­es", 128 p. [In Uk­ra­ini­an].

[3]     Bakhrus­hin, V. E., & Ig­na­hi­na, M. A. (2008). Appli­ca­ti­on of sta­tis­ti­cal met­hods in pro­ces­sing the re­sults of pro­duc­ti­on control in me­tal­lurgy of se­mi­con­duc­tors. System Techno­logy, 3(56), Vol. 1, 3–7. [In Rus­si­an].

[4]     Bot­su­la, M., & Mor­gun, I. (2008). The prob­lem of qua­lity exa­mi­na­ti­on of dis­tan­ce co­ur­ses. Sci­en­ti­fi­cal Jo­ur­nals of Vinnytsia Na­ti­onal Techni­cal Uni­ver­sity, 4, 1–7. Ret­ri­eved from: http://nbuv.gov.ua/e-iour­nals/vntu/2008-4/2008-4.fi­les/uk/08mpbcme.uk.pdf. [In Uk­ra­ini­an].

[5]     Brandt, Z. (2003). Da­ta analysis: Sta­tis­ti­cal and Com­pu­ta­ti­onal Met­hods for Sci­en­tists and En­gi­ne­ers. Mos­cow: Mir, AST, 686 p. [In Rus­si­an].

[6]     Gas­ka­rov, D., & Sha­po­va­lov, V. I. (1978). Small sample. Mos­cow: Sta­tis­tics, 248 p. [In Rus­si­an].

[7]     Gmur­man, B. E. (2004). Gui­de to sol­ving prob­lems of the the­ory of pro­ba­bi­lity and mat­he­ma­ti­cal sta­tis­tics. Mos­cow: Hig­her Scho­ol, 404 p. [In Rus­si­an].

[8]     Gmur­man, V. E. (2003). Pro­ba­bi­lity the­ory and mat­he­ma­ti­cal sta­tis­tics. Mos­cow: Hig­her Scho­ol, 479 p. [In Rus­si­an].

[9]     Gryci­uk, Yu. I., & Grytsyuk, P. Yu. (2019). Con­tem­po­rary prob­lems of sci­en­ti­fic eval­ua­ti­on of the appli­ca­ti­on softwa­re qua­lity. Sci­en­ti­fic Bul­le­tin of UN­FU, 25(7), 284–294. https://doi.org/10.15421/40250745

[10]  Gu­ter, R. S., & Rez­ni­kovskii, P. T. (1971). Prog­ram­ming and com­pu­ta­ti­onal mat­he­ma­tics. Mos­cow: Sci­en­ce. Vol. 2, 273 p. [In Rus­si­an].

[11]  Hrytsiuk, Yu. I., & Andrushchakevych, O. T. (2018). Means for determining software quality by metric analysis methods. Scientific Bulletin of UNFU, 28(6), 159–171. https://doi.org/10.15421/40280631.

[12]  Hrytsi­uk, Yu. I., & Buchkovska, A. Yu. (2017). Vis­ua­li­za­ti­on of the Re­sults of Ex­pert Eval­ua­ti­on of Softwa­re Qua­lity Using Po­lar Di­ag­rams. Sci­en­ti­fic Bul­le­tin of UN­FU, 27(10), 137–145. https://doi.org/10.15421/40271025

[13]  Hrytsi­uk, Yu. I., & Grytsyuk, P. Yu. (2019). The met­hods of the spe­ci­fi­ed po­ints of the es­ti­ma­tes of the pa­ra­me­ter of pro­ba­bi­lity distri­bu­ti­on of the ran­dom va­ri­ab­le ba­sed on a li­mi­ted amo­unt of da­ta. Sci­en­ti­fic Bul­le­tin of UN­FU, 29(2), 141–149. https://doi.org/10.15421/40290229

[14]  Hrytsiuk, Yu. I., & Nemova, E. A. (2018). Peculiarities of Formulation of Requirements to the Software. Scientific Bulletin of UNFU, 28(7), 135–148. https://doi.org/10.15421/40280727.

[15]  Kar­tavy, V., & Ya­ro­va­ya, V. (2004). Mat­he­ma­ti­cal Sta­tis­tics. Kyiv: Pro­fes­si­onal, 484 p. [In Uk­ra­ini­an].

[16]  Kob­zar, A. I. (2006). Appli­ed Mat­he­ma­ti­cal Sta­tis­tics. Mos­cow: Fiz­mat­lit, 816 p. [In Rus­si­an].

[17]  Ko­les­ni­kov, A. A. (1994). Syner­ge­tic the­ory of ma­na­ge­ment. Mos­cow: Ener­go­ato­mis­dat, 344 p. [In Rus­si­an].

[18]  La­gu­tin, M. B. (2007). Transpa­rent mat­he­ma­ti­cal sta­tis­tics. Mos­cow: Bi­nom, 472 p. [In Rus­si­an].

[19]  Mi­ki­tin, J. P. (2008). Prog­ram­ming mo­del ave­ra­ging met­hod No­ise. Bul­le­tin of the Na­ti­onal Uni­ver­sity "Lviv Polytechnic". Se­ri­es: Com­pu­ter Sci­en­ce and In­for­ma­ti­on Techno­logy, 629, 21–24. [In Uk­ra­ini­an].

[20]  Mor­gun, I. (2011). The met­hod of pe­er re­vi­ew softwa­re qua­lity. Softwa­re En­gi­ne­ering: ma­ter. In­tern. na­uk. and prac­ti­cal. Conf. grad­ua­te stu­dents, 2(6), 33–37. Vinnytsia. Ret­ri­eved from: http://jrnl.nau.edu.ua/in­dex.php/IPZ/ar­tic­le/vi­ew/3086. [In Uk­ra­ini­an].

[21]  Or­lov, A. I. (2006). Appli­ed Sta­tis­tics. Mos­cow: Exam, 671 p. [In Rus­si­an].

[22]  Ples­kach, V. L., & Za­to­natska, T. (2011). In­for­ma­ti­on systems and techno­logy in en­terpri­ses: textbo­ok. Kyiv: Know­led­ge. 718 p. Ret­ri­eved from: http://pid­ruchni­ki.com/1194121347734/in­for­ma­ti­ka/ana­liz_ya­kos­ti_prog­ram­no­go_za­bez­pec­hennya#42. [In Uk­ra­ini­an].

[23]  Pro­ta­sov, K. V. (2005). Sta­tis­ti­cal analysis of ex­pe­ri­men­tal da­ta. Mos­cow: Mir, 142 p. [In Rus­si­an].

[24]  Sa­ge, E., & Mels, J. (1976). Es­ti­ma­ti­on the­ory and its appli­ca­ti­on in com­mu­ni­ca­ti­on and ma­na­ge­ment. Mos­cow: Com­mu­ni­ca­ti­on, 496 p. [In Rus­si­an].

[25]  Shan­non, K. (1963). Work on in­for­ma­ti­on the­ory and cyber­ne­tics. Mos­cow: Pub­lis­hing Hou­se of Fo­re­ign Li­te­ra­tu­re, 829 p. [In Rus­si­an].

[26]  Tol­ba­tov, A. (1994). Mat­he­ma­ti­cal Sta­tis­tics and task op­ti­mi­za­ti­on al­go­rithms and prog­rams. Kyiv: High Scho­ol, 226 p. [In Uk­ra­ini­an].

[27]  Tu­luc­hen­ko, G. Y. (2008). Ge­ometry com­pu­ting templa­tes bars of centric ave­ra­ging met­hod. Bul­le­tin of the Za­po­rizhzhya Na­ti­onal Uni­ver­sity, 1, 187–190. [In Uk­ra­ini­an].

[28]  Turchin, V. (2006). Pro­ba­bi­lity and Mat­he­ma­ti­cal Sta­tis­tics: Con­cepts, examples, prob­lem. Dnep­ro­pet­rovsk: Dnip­rovsky Na­ti­onal Uni­ver­sity, 476 p. [In Uk­ra­ini­an].

[29]  Van­kovych, T.-N. M., Zin­ko, J. A., & Boz­hen­ko, M. (2010). An ave­ra­ging met­hod for os­cil­la­ting stoc­has­tic systems with qu­ick pha­se. Bul­le­tin of the Na­ti­onal Uni­ver­sity "Lviv Polytechnic". Se­ri­es: Dyna­mics, Du­ra­bi­lity and De­sign of Mac­hi­nes and De­vi­ces, 678, 11–14. [In Uk­ra­ini­an].

[30]  Vo­ro­nin, A. N. (2004). Met­hod of in­ter­con­nec­ting sig­nals for bis­ta­tic ra­dar small ce­les­ti­al bo­di­es. System analysis and ma­na­ge­ment: me­as. rep. 9th In­ter­na­ti­onal. Conf., (pp. 113–114). Mos­cow: Pub­lis­hing hou­se of the Mos­cow Avi­ati­on Insti­tu­te. [In Rus­si­an].

[31]  Vo­ro­nin, A. N. (2006). Syner­gis­tic met­hods of da­ta aggre­ga­ti­on. Cyber­ne­tics and Systems Analysis, 2, 24–30. [In Rus­si­an].

[32]  Vo­ro­nin, A. N. (2014). Met­hods of da­ta aggre­ga­ti­on. Cyber­ne­tics and Systems Analysis, 50(5), 78–84. [In Rus­si­an].

[33]  Vo­ro­nin, A. N., & Zi­at­di­nov, J. K. (2013). The­ory and prac­ti­ce of mul­ti-cri­te­ria de­ci­si­ons: mo­dels, met­hods, imple­men­ta­ti­on. Sa­arbru­cken (De­utschland); Lam­bert Aca­de­mic Pub­lis­hing, 305 p. [In Rus­si­an].

[34]  Vo­ro­nin, A. N., Zi­at­di­nov, J. K., & Ku­linskiy, M. V. (2011). Mul­tic­ri­te­ria task: mo­dels and met­hods: a mo­nog­raph. Kyiv: NAU, 348 p. [In Rus­si­an].

[35]  Zhluk­ten­ko, V. I., & Na­ko­nechny, S. (2000). Pro­ba­bi­lity and Mat­he­ma­ti­cal Sta­tis­tics: tra­ining met­hod. man­ual. In 2 parts. Part I. Pro­ba­bi­lity. Kyiv: Kyiv Na­ti­onal Eco­no­mic Uni­ver­sity, 304 p. [In Uk­ra­ini­an].

[36]  Zhluk­ten­ko, V. I., Na­ko­nechny, S., & Sa­vin, S. (2001). Pro­ba­bi­lity and Mat­he­ma­ti­cal Sta­tis­tics: tra­ining met­hod. man­ual. In 2 parts. Part II. Mat­he­ma­ti­cal Sta­tis­tics. Kyiv: Kyiv Na­ti­onal Eco­no­mic Uni­ver­sity, 336 p. [In Uk­ra­ini­an].