Analysis of calculating level of service for pedestrians

TT.
2021;
: 50-59
https://doi.org/10.23939/tt2021.01.050
Received: January 20, 2021
Accepted: April 26, 2021
1
MG Logistics Inc
2
Lviv Polytechnic National University

In this paper, several methods of the assessment of pedestrian objects operation based on the level of service are reviewed. Today, there is a problem that should be assessed, particularly how pedestrian paths respond the level of service. Assessment of this level is the most widespread method of determination the objects` quality that relate to the pedestrian operations. Places, where a significant probability of conflict between different flows and their users, are often called intersections. Moreover, on such intersections, particularly with complex road conditions and on which the movement of cyclists, cars, and different vehicles is present, road users face with complicated situations when every of them should be sure in his safety and forecast further actions and decisions of other road users. The most widespread and generally accepted methods of assessment of level of service on pedestrian path, particularly: Highway capacity manual 2000 method, Australian method, method of the trip quality, Landice model and common approach analysis. Vehicles, signal delay, and interaction of pedestrians and cyclists were determined as the main factors that have impact on the level of service of pedestrians at the intersections. Analysis of different methods in the paper allows assessing and identifying the level of service determining the characteristics that could help in solving the questions concerning the comfort of pedestrian movement. In the range of these methods, the principles of vehicles movement and interaction with pedestrians are also reviewed. Other methods relate more to the design of the objects of pedestrian environment than factual movement of pedestrians. To form the whole understanding of the methodology of determination of the level of service of pedestrian objects, we should analyze and compare the values, obtained by different methods

1. Cepolina, E. M., Menichini, F., & Rojas, P. G. (2017) Pedestrian Level of Service: the Impact of Social Groups on Pedestrian Flow Characteristics Pedestrian Level of Service: the Impact of Social Groups on Pedestrian Flow Characteristics (in English) https://doi.org/10.2495/SDP-V12-N4-839-848/050

2. Smothers, A., Thomas, J., Fang, W., Young, S., Morrissey, E. A., Beaver, M., & Melnick, H. (2021). Limiting barriers to exercise through the development of a faith-based community walking program. Journal of Interprofessional Education & Practice, 100428 (in English) https://doi.org/10.1016/j.xjep.2021.100428

3. Zuniga-Garcia, N., Ross, H. W., & Machemehl, R. B. (2018). Multimodal Level of Service Methodologies: Evaluation of the Multimodal Performance of Arterial Corridors. Transportation Research Record2672(15), 142-154 (in English) https://doi.org/10.1177/0361198118776112

4. Garau, C., & Pavan, V. M. (2018). Evaluating urban quality: Indicators and assessment tools for smart sustainable cities. Sustainability10(3), 575 (in English) https://doi.org/10.3390/su10030575

5. Ji, H., Peng, Y., & Ding, W. (2019). A Quantitative Study of Geometric Characteristics of Urban Space Based on the Correlation with Microclimate. Sustainability11(18), 4951 (in English) https://doi.org/10.3390/su11184951

6. Reul, J., Grube, T., & Stolten, D. (2021). Urban transportation at an inflection point: An analysis of potential influencing factors. Transportation Research Part D: Transport and Environment92, 102733 (in English) https://doi.org/10.1016/j.trd.2021.102733

7. Kadali, B. R., & Vedagiri, P. (2016). Review of pedestrian level of service: Perspective in developing countries. Transportation Research Record2581(1), 37-47 (in English) https://doi.org/10.3141/2581-05

8. Landis, B. W., Vattikuti, V. R., Ottenberg, R. M., McLeod, D. S., & Guttenplan, M. (2001). Modeling the roadside walking environment: pedestrian level of service. Transportation research record1773(1), 82-88 (in English) https://doi.org/10.3141/1773-10

9. Gallin, N. (2001). Quantifying pedestrian friendliness--guidelines for assessing pedestrian level of service. Road & Transport Research10(1), 47 (in English)

10. Guensler, R., Grossman, A., Frackelton, A., Elango, V., Xu, Y., Toth, C., ... & Sadana, R. (2015). Automated sidewalk quality and safety assessment system (No. FHWA-GA-15-1216). Georgia. Department of Transportation. Office of Research (in English)

11. Al-Khateeb, G. G. (2020). Highway Planning, Survey, and Design. CRC Press (in English) https://doi.org/10.1201/9780429054310

12. Banerjee, A., Maurya, A. K., & Lämmel, G. (2018). A review of pedestrian flow characteristics and level of service over different pedestrian facilities. Collective Dynamics3, 1-52 (in English) https://doi.org/10.17815/CD.2018.17

13. Naga Raju, S. (2015). Improving the efficiency of energy recovery systems of wheeled vehicles with electric drive. Mester’s thesis. Rourkela: National Institute of Technology (in English).

14. Raad, N., & Burke, M. (2017, November). Pedestrian Levels-of-Service tools: problems of conception, factor identification, measurement and usefulness. In 39th Australasian Transport Research Forum (ATRF 2017), Auckland , 27-29 (in English)

15. Peterson, S. J. (2020). The Transportation Research Board, 1920 – 2020: Everyone Interested Is Invited. Washington, DC: The National Academies Press (in English) https://doi.org/10.17226/25472

16. Maity, G., & Roy, S. K. (2018). Multiobjective transportation problem using fuzzy decision variable through multi-choice programming. Intelligent Transportation and Planning: Breakthroughs in Research and Practice, IGI Global, 866-882 (in English) https://doi.org/10.4018/978-1-5225-5210-9.ch038

17. Cepolina, E. M., Menichini, F., & Rojas, P. G. (2018). Level of service of pedestrian facilities: Modelling human comfort perception in the evaluation of pedestrian behaviour patterns. Transportation research part F: traffic psychology and behaviour58, 365-381 (in English) https://doi.org/10.1016/j.trf.2018.06.028

18. Nag, D., Goswami, A. K., Gupta, A., & Sen, J. (2020). Assessing urban sidewalk networks based on three constructs: a synthesis of pedestrian level of service literature. Transport reviews40(2), 204-240 (in English) https://doi.org/10.1080/01441647.2019.1703841

19. Hyndman R. and Athanasopoulos G. Forecasting: principles and practice. Retrieved from https:/OTexts.com/fpp2/ (in English)