On the radial solutions of a p-Laplace equation with the Hardy potential

2023;
: pp. 1093–1099
https://doi.org/10.23939/mmc2023.04.1093
Received: August 20, 2023
Accepted: October 27, 2023

Mathematical Modeling and Computing, Vol. 10, No. 4, pp. 1093–1099 (2023)

1
LaR2A Laboratory, Faculty of Sciences, Abdelmalek Essaadi University
2
LaR2A Laboratory, Faculty of Sciences, Abdelmalek Essaadi University

In this paper, we study the asymptotic behavior of radial solutions of the following quasi-linear equation with the Hardy potential $\Delta_p u+h(|x|)|u|^{p-2}u=0$, $x\in \mathbb{R}^{N}-\{0\}$, where $2<p<N$, $h$ is a radial function on $\mathbb{R}^{N}-\{0\}$ such that $h(|x|)=\gamma|x|^{-p}$, $\gamma>0$ and $\Delta_p u=\operatorname{div}\left(|\nabla u|^{p-2}\nabla u\right)$ is the $p$-Laplacian operator.  The study strongly depends on the sign of $\gamma-(\sigma/p^\ast)^p$ where $\sigma=(N-p)/(p-1)$ and $p^\ast=p/(p-1)$.

  1. Bouzelmate A., Gmira A.  Existence and asymptotic behavior of unbounded positive solutions of a nonlinear degenerate elliptic equation.  Nonlinear Dynamics and Systems Theory.  21 (1), 27–55 (2021).
  2. Franca M.  Radial ground states and singular ground states for a spatial-dependent $p$-Laplace equation.  Journal of Differential Equations.  248 (11), 2629–2656 (2010).
  3. Itakura K., Onitsuka M., Tanaka S.  Perturbations of planar quasilinear differential systems.  Journal of Differential Equations.  271, 216–253 (2021).
  4. Itakura K., Tanaka S.  A note on the asymptotic behavior of radial solutions to quasilinear elliptic equations with a Hardy potential.  Proceedings of the American Mathematical Society, Series B.  8, 302–310 (2021).
  5. Onitsuka M., Tanaka S.  Characteristic equation for autonomous planar half-linear differential systems.  Acta Mathematica Hungarica.  152, 336–364 (2017).
  6. Sugie J., Onitsuka M., Yamaguchi A.  Asymptotic behavior of solutions of nonautonomous half-linear differential systems.  Studia Scientiarum Mathematicarum Hungarica.  44 (2), 159–189 (2007).
  7. Xiang C.-L.  Asymptotic behaviors of solutions to quasilinear elliptic equations with critical Sobolev growth and Hardy potential.  Journal of Differential Equations.  259 (8), 3929–3954 (2015).
  8. Sfecci A.  On the structure of radial solutions for some quasilinear elliptic equations.  Journal of Mathematical Analysis and Applications.  470 (1), 515–531 (2019).
  9. Bidaut-Véron M. F.  The $p$-Laplacien heat equation with a source term: self-similar solutions revisited.  Advanced Nonlinear Studies.  6 (1), 69–108 (2006).
  10. Abdellaoui B., Felli V., Peral I.  Existence and nonexistence results for quasilinear elliptic equations involving the $p$-Laplacian.  Bollettino dell'Unione Matematica Italiana.  9-B (2), 445–484 (2006).
  11. Hirsch M. W., Smal S., Devaney R. L.  Differential Equations, Dynamical Systems, and an Introduction to Chaos.  Elsevier/Academic Press, Amsterdam (2013).