INTENSIFICATION OF OXIDATIVE DESTRUCTION OF BENZENE BY SODIUM HYPOCHLORITE UNDER THE EFFECT OF ULTRASONIC RADIATION

2023;
: 22-28
1
Lviv Polytechnic National University
2
Institute of Chemical Technology, Mumbai, India
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University
5
Institute of Chemical Technology, Mumbai, India

 

The process of the interaction of benzene with sodium hypochlorite in a model environment under the action of ultrasonic radiation of different power and under the metered supply of an oxidant solution was investigated. The course of the process was evaluated by the change in the value of the redox potential of the medium over time. By the method of spectrophotometric analysis, it was established that as a result of interaction with sodium hypochlorite in cavitation fields, almost complete mineralization of benzene occurs. It is shown that the oxidative destruction of benzene mainly occurs due to the products of sonolysis of water.

1. Meckenstock, R.U., Boll, M., Mouttaki, H., Koelschbach, P., Weyrauch, P., Dong, X., Himmelberg, A.M. (2016). Anaerobic degradation of benzene and polycyclic aromatic hydrocarbons. J. Mol. Microbiol. Biotechnol. 26 92-118. doi: 10.1159/000441358
https://doi.org/10.1159/000441358
2. Ohio Department of Health, BTEX (Benzene, Toluene, Ethylbenzene, and Xylenes), (2009). http://www.odh.ohio.gov/∼/media/ODH/ASSETS/Files/eh/HAS/btex.ashx.
3. Atashgahi, S., Hornung, B., Van Der Waals, M.J., Da Rocha, U.N., Hugenholtz, F., Nijsse, B., Molenaar, D., Van Spanning, R., Stams, A.J.M., Gerritse, J., Smidt, H. (2018). A benzene-degrading nitrate-reducing microbial consortium displays aerobic and anaerobic benzene degradation pathways. Sci. Rep. 8, 1-12. DOI:10.1038/s41598-018-22617-x
https://doi.org/10.1038/s41598-018-22617-x
4. Ming, H. Yu. H., Zhang, H., Li, H., Pan, K., Liu, Y., Wang, F., Gong, J., Kang, Z. (2012) . Au/ZnO nanocomposites: Facile fabrication and enhanced photocatalytic activity for degradation of benzene. Mater. Chem. Phys. 137, 113-117. doi.org/10.1016/j.matchemphys.2012.02.076
https://doi.org/10.1016/j.matchemphys.2012.02.076
5. Braeutigam, P. , Wu, Z.L., Stark, A., Ondruschka, B. (2009). Degradation of BTEX in aqueous solution by hydrodynamic cavitation. Chem. Eng. Technol. 32,  745-753. doi.org/10.1002/ceat.200800626
https://doi.org/10.1002/ceat.200800626
6. Ramteke, L.P. , Gogate, P.R. (2015). Treatment of toluene, benzene, naphthalene and xylene (BTNXs) containing wastewater using improved biological oxidation with pretreatment using Fenton/ultrasound based processes. J. Ind. Eng. Chem. 28, 247-260.  https://doi.org/10.1016/j.jiec.2015.02.022
https://doi.org/10.1016/j.jiec.2015.02.022
7. Barik, A.J. , Gogate, P.R. (2016). Degradation of 4-chloro 2-aminophenol using a novel combined process based on hydrodynamic cavitation, UV photolysis and ozone. Ultrason. Sonochem. 30,  70-78. doi.org/10.1016/j.ultsonch.2015.11.007
https://doi.org/10.1016/j.ultsonch.2015.11.007
8. Dhanke, P.B., Wagh, S.M. (2020). Intensification of the degradation of Acid RED-18 using hydrodynamic cavitation. Emerg. Contam. 6, 20-32. doi: 10.1016/j.emcon.2019.12.001. 
https://doi.org/10.1016/j.emcon.2019.12.001
9. Innocenzi, V., Prisciandaro, M., Centofanti, M., Veglio, F. (2019). Comparison of performances of hydrodynamic cavitation in combined treatments based on hybrid induced advanced Fenton process for degradation of azo-dyes.  J. Environ. Chem. Eng. 7, 103171.  doi.org/10.1016/j.jece.2019.103171
https://doi.org/10.1016/j.jece.2019.103171
10. Thanekar, P., Gogate, P.R., Znak, Z., Sukhatskiy, Y., Mnykh, R. (2021). Degradation of benzene present in wastewater using hydrodynamic cavitation in combination with air. Ultrasonics Sonochemistry,  70, 105296. doi.org/10.1016/j.ultsonch.2020.105296
https://doi.org/10.1016/j.ultsonch.2020.105296
11. Sukhatskiy, Y., Znak, Z., Zin, O., & Chupinskyi, D. (2021). Ultrasonic cavitation in wastewater treatment from azo dye methyl orange. Chemistry & Chemical Technology, 15 (2), 284-290. doi: 10.23939/chcht15.02.284
https://doi.org/10.23939/chcht15.02.284
 12. Rajoriya, S., Carpenter, J., Saharan, V.K., Pandit, A.B. (2016). Hydrodynamic cavitation: An advanced oxidation process for the degradation of bio-refractory pollutants.  Rev. Chem. Eng. 32, 379-411. doi: 10.1515/revce-015-0075.
https://doi.org/10.1515/revce-2015-0075
13. Rajoriya, S. , Bargole, S., Saharan, V.K. (2017). Degradation of reactive blue 13 using hydrodynamic cavitation: Effect of geometrical parameters and different oxidizing additives. Ultrason. Sonochem. 37, 192-202. doi.org/10.1016/j.ultsonch.2017.01.005
https://doi.org/10.1016/j.ultsonch.2017.01.005
14. Goel, M.,  Hongqiang, H., Mujumdar, A.S., Ray, M.B. (2004). Sonochemical decomposition of volatile and non-volatile organic compounds - A comparative study. Water Res. 38, 4247-4261. doi.org/10.1016/j.watres.2004.08.008
https://doi.org/10.1016/j.watres.2004.08.008
15. Znak, Z., Zin, O. Investigation of disposal of liquid wastes from olefin production by sodium hypochlorite solutions. (2017).  Chemistry & Chemical Technology. 11 (4), 517-522.
https://doi.org/10.23939/chcht11.04.517