Study of Se-based microgel catalyst for heterophase benzaldehyde oxidation

2024;
: 66-70
1
Lviv Polytechnic National University
2
Probiotic Group, Esch-Sur-Alzette
3
Ivan Franko National University
4
Lviv Polytechnic National University
5
Lviv Polytechnic National University

Benzaldehyde was oxidized with hydrogen peroxide in the heterophase system with different ratios of benzene and water using selenium-based catalysts. For the reaction, which was carried out in the ratio of benzene:water = 4:1, Se-microgel proved to be a highly active colloidal catalyst and allowed to achieve 94.1 % yield of benzoic acid at 60 °C. The synthesized Se-modified microgel demonstrates exceptional catalytic activity in oxidation reactions at the interface in various heterophase systems at different temperatures.

1. Pal, N.; Bhaumik, A. (2015) Mesoporous Materials: Versatile Supports in Heterogeneous Catalysis for Liquid Phase Catalytic Transformations. RSC Adv,5 (31), 24363-24391. https://doi.org/10.1039/c4ra13077d.
https://doi.org/10.1039/C4RA13077D
2. Tan, H.; Zhang, P.; Wang, L.; Yang, D.; Zhou, K. (2011) Multifunctional Amphiphilic Carbonaceous Microcapsules Catalyze Water/Oil Biphasic Reactions. Chem. Commun,47 (43), 11903-11905.https://doi.org/10.1039/c1cc15654c.
https://doi.org/10.1039/c1cc15654c
3. Wilson, K.; Clark, J. H. (2000) Solid Acids and Their Use as Environmentally Friendly Catalysts in Organic Synthesis. Pure Appl. Chem,72 (7), 1313-1319. https://doi.org/10.1351/pac200072071313.
https://doi.org/10.1351/pac200072071313
4. Samanta, S.; Mal, N. K.; Bhaumik, A. (2005) Mesoporous Cr-MCM-41: An Efficient Catalyst for Selective Oxidation of Cycloalkanes. J. Mol. Catal. A Chem,236 (1-2), 7-11. https://doi.org/10.1016/j.molcata.2005.04.005.
https://doi.org/10.1016/j.molcata.2005.04.005
5. Crossley, S.; Faria, J.; Shen, M.; Resasco, D. E. (2010) Solid Nanoparticles That Catalyze Biofuel Upgrade Reactions at the Water/Oil Interface. Science,327 (5961), 68-72. https://doi.org/10.1126/science.1180769.
https://doi.org/10.1126/science.1180769
6. Drexler, S.; Faria, J.; Ruiz, M. P.; Harwell, J. H.; Resasco, D. E. (2012) Amphiphilic Nanohybrid Catalysts for Reactions at the Water/Oil Interface in Subsurface Reservoirs. Energy and Fuels,26 (4), 2231-2241. https://doi.org/10.1021/ef300119p.
https://doi.org/10.1021/ef300119p
7. Yang, X.; Liang, Y.; Zhao, X.; Song, Y.; Hu, L.; Wang, X.; Wang, Z.; Qiu, J. (2014) Au/CNTs Catalyst for Highly Selective Hydrodeoxygenation of Vanillin at the Water/Oil Interface. RSC Adv.,4 (60), 31932-31936. https://doi.org/10.1039/c4ra04692g.
https://doi.org/10.1039/C4RA04692G
8. Spears, M. W.; Herman, E. S.; Gaulding, J. C.; Lyon, L. A. (2014) Dynamic Materials from Microgel Multilayers. Langmuir,30 (22), 6314-6323. https://doi.org/10.1021/la403058t.
https://doi.org/10.1021/la403058t
9. Tan, K. H.; Xu, W.; Stefka, S.; Demco, D. E.; Kharandiuk, T.; Ivasiv, V.; Nebesnyi, R.; Petrovskii, V. S.; Potemkin, I. I.; Pich, A. (2019) Selenium-Modified Microgels as Bio-Inspired Oxidation Catalysts. Angew. Chemie - Int. Ed,58 (29), 9791-9796. https://doi.org/10.1002/anie.201901161.
https://doi.org/10.1002/anie.201901161
10. Nebesnyi, R.; Ivasiv, V.; Pikh, Z.; Kharandiuk, T.; Shpyrka, I.; Voronchak, T.; Shatan, A. B. (2019) Low Temperature Acrolein to Acrylic Acid Oxidation with Hydrogen Peroxide on Se-Organic Catalysts. Chem. Chem. Technol,13 (1), 38-45. https://doi.org/10.23939/chcht13.01.038.
https://doi.org/10.23939/chcht13.01.038