Personalized education plan construction using neural networks

2024;
: pp. 1003–1012
https://doi.org/10.23939/mmc2024.04.1003
Received: March 08, 2024
Revised: November 07, 2024
Accepted: November 14, 2024

Kopylchak O., Kazymyra I., Mukan O., Bondar B.  Personalized education plan construction using neural networks.  Mathematical Modeling and Computing. Vol. 11, No. 4, pp. 1003–1012 (2024)

1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Politechnic National University
4
Lviv Polytechnic National University

In the paper, a personalized education planning system that utilizes neural networks and artificial intelligence to adapt learning paths for individual learners dynamically is presented.  The system employs neural networks to analyze learner profiles, preferences, and real-time performance data, enabling the generation of tailored study plans.  Neural networks are integral in predicting learner needs by analyzing past performance, learning style, and engagement patterns, allowing the system to recommend appropriate learning modules and optimal study schedules.  Additionally, the system adjusts learning plans in real time, balancing cognitive load and ensuring personalized pacing to prevent learner fatigue.  By incorporating these advanced mechanisms, the system provides content recommendations and schedules that evolve continuously as learners progress.  The adaptive nature of the system is further enhanced through neural networks' ability to optimize long-term learning strategies, ensuring that the right balance between challenge and support is maintained.  The proposed system can be seamlessly integrated with Learning Management Systems (LMS), offering a scalable solution for personalized education.  The paper highlights the effectiveness of neural networks in creating efficient, learner-centered study paths and improving educational outcomes through data-driven adaptation.

  1. Elfatouaki H., Adnane L., Charafeddine A. Z., Mohamed A.  AI-Enhanced ECG diagnosis system for acute myocardial infarction with LBBB: Constant-Q transform and ResNet-50 integration.  Mathematical Modeling and Computing.  11 (3), 654–662 (2024).
  2. Roudani M., Elkari B., El Moutaouakil K., Ourabah L., Hicham B., Chellak S.  Twitter-sentiment analysis of Moroccan diabetic using Fuzzy C-means SMOTE and deep neural network.  Mathematical Modeling and Computing.  11 (3), 835–847 (2024).
  3. Zoubaidi Z., Herrou B., Sekkat S., Khadiri H.  Conception of a new quality control method based on neural networks.  Mathematical Modeling and Computing.  11 (3), 692–701 (2024).
  4. Sghir A., Ziani M., El Handri K.  A data-driven fusion of deep learning and transfer learning for orange disease classification.  Mathematical Modeling and Computing.  11 (3), 870–882 (2024).
  5. Belhabib F., El Moutaouakil K., Rbihou S., Elafaar A.  Big data clustering through fusion of FCM, optimized encoder-decoder CNN, and BiLSTM.  Mathematical Modeling and Computing.  11 (3), 798–813 (2024).
  6. Solomka I. R., Liubinskyi B. B., Torshyn V. V.  Application of machine learning algorithms to enhance blockchain network security.  Mathematical Modeling and Computing.  11 (3), 893–903 (2024).
  7. Thakur R. K., Agrawal N. K., Kumar P.  A practical approach to college timetable scheduling.  Mathematical Modeling and Computing.  11 (3), 710–719 (2024).
  8. Jedidi Y., Ibriz A., Benslimane M., Hachmoud A., Tmimi M., Hajjioui Y., Rahhali M.  Predicting students' academic performance and modeling using data mining techniques.  Mathematical Modeling and Computing.  11 (3), 814–825 (2024).
  9. Roll I., Wylie R.  Evolution and Revolution in Artificial Intelligence in Education.  International Journal of Artificial Intelligence in Education.  26, 582–599 (2016).
  10. VanLehn K.  The relative effectiveness of human tutoring, intelligent tutoring systems, and other tutoring systems.  Educational Psychologist.  46 (4), 197–221 (2011).
  11. Hwang G.-J., Sung H.-Y., Chang S.-C., Huang X.-C.  A fuzzy expert system-based adaptive learning approach to improving students' learning performances by considering affective and cognitive factors.  Computers and Education: Artificial Intelligence.  1, 100003 (2020).
  12. Zawacki-Richter O., Latchem C.  Exploring four decades of research in Computers & Education.  Computers & Education.  122, 136–152 (2018).
  13. Dzikovska M., Steinhauser N., Farrow E., Moore J., Campbell G.  BEETLE II: deep natural language understanding and automatic feedback generation for Intelligent tutoring in Basic Electricity and Electronics.  International Journal of Artificial Intelligence in Education.  24 (3), 284–332 (2014).
  14. Sajja R., Sermet Y., Cikmaz M., Cwiertny D., Demir I.  Artificial Intelligence-Enabled Intelligent Assistant for Personalized and Adaptive Learning in Higher Education.  Information.  15 (10), 596 (2024).
  15. Amri S., Bani R., Zenkouar L., Guennoun Z.  Improving Amazigh POS tagging using machine learning.  Mathematical Modeling and Computing.  11 (3), 741–751 (2024).
  16. Lafkiar S., En Nahnahi N.  An Arabic question generation system based on a shared BERT-base encoder-decoder architecture.  Mathematical Modeling and Computing.  11 (3), 763–772 (2024).