Study of Pathfinding Approach Based on A* With Adaptive Occupancy Grid

2024;
: pp. 95 - 100
1
Ivan Franko National University of Lviv
2
Ivan Franko National University of Lviv
3
Ivan Franko National University of Lviv
4
Ivan Franko National University of Lviv

This paper presents the results of a study on the A* search algorithm applied to a two-dimensional map with obstacles. Since, in typical cases, A* is implemented on a map divided into cells of equal size, a scientific interest has lies in investigating the efficiency of this algorithm on a map with dynamically variable cell size. Such a map representation increases the ‘resolution’ of constructing a better trajectory near obstacles. For this purpose, the paper proposes an approach to representing the search space as a dynamic adaptive grid using a QuadTree structure. Additionally, a modification of the A* algorithm has been proposed and investigated, which involves selecting the best cell in the neighborhood of the agent’s current position and performing pathfinding from a starting point to a goal. The paper considers maps of various sizes and complexities for numerical experiments and compares the classical and modified A* algorithms. It has been shown that the proposed modification of the A* algorithm demonstrates better computational properties than the classical version of the algorithm on an adaptive grid.

  1. X. Sun, S. Deng, B. Tong, S. Wang, C. Zhang, & Y. Jiang. «Hierarchical framework for mobile robots to effectively and autonomously explore unknown environments». ISA Trans., vol. 134, pp. 1-15, Sep. 2023. DOI: https://doi.org/10.1016/j.isatra.2022.09.005
  2. H. Ryu. Hierarchical Path-Planning for Mobile Robots Using a Skeletonization-Informed Rapidly Exploring Random Tree*. Appl. Sci., vol. 10, no. 21, p. 7846, Nov. 2020. DOI: https://doi.org/10.3390/app10217846
  3. Z. An, X. Rui, and C. Gao. Improved A* Navigation Path- Planning Algorithm Based on Hexagonal Grid. ISPRS Int. J. Geo-Inf., vol. 13, no. 5, p. 166, May 2024. DOI: https://doi.org/10.3390/ijgi13050166
  4. D. Foead, A. Ghifari, M. B. Kusuma, N. Hanafiah, & E. Gunawan. A Systematic Literature Review of A* Pathfinding. Procedia Comput. Sci., vol. 179, pp. 507- 514,. DOI: https://doi.org/10.1016/j.procs.2021.01.034
  5. Y. D. Setiawan, P. S. Pratama, S. K. Jeong, V. H. Duy, & S. B. Kim. Experimental Comparison of A* and D* Lite Path Planning Algorithms for Differential Drive Automated Guided Vehicle. AETA 2013: Recent Advances in Electrical Engineering and Related Sciences. Berlin, Heidelberg: Springer Berl. Heidelb., 2014, pp. 555-564. DOI: https://doi.org/10.1007/978-3-642-41968-3_55
  6. F. Duchoň et al. Path Planning with Modified a Star Algorithm for a Mobile Robot. Procedia Eng., vol. 96, pp. 59-69, 2014. DOI: https://doi.org/10.1016/j.proeng.2014.12.098
  7. A. Le, V. Prabakaran, V. Sivanantham, & R. Mohan. Modified A-Star Algorithm for Efficient Coverage Path Planning in Tetris Inspired Self-Reconfigurable Robot with Integrated Laser Sensor. Sensors, vol. 18, no. 8, p. 2585, Aug. 2018. DOI: https://doi.org/10.3390/s18082585
  8. Muhtadin, R. M. Zanuar, I. K. E. Purnama, & M. H. Purnomo. Autonomous Navigation and Obstacle Avoidance for Service Robot. 2019 Int. Conf. Comput. Eng., Netw., Intell. Multimedia (CENIM), Surabaya, Indonesia, Nov. 19-20, 2019. IEEE, 2019. DOI: https://doi.org/10.1109/CENIM48368.2019.8973360
  9. S. Sahni and D. P. Mehta. Handbook of Data Structures and Applications. Taylor Francis Group, 2018.
  10. R. Wang, Z. Lu, Y. Jin, and C. Liang. Application of A* algorithm in intelligent vehicle path planning. Math. Models Eng., Aug. 2022. DOI: https://doi.org/10.21595/ mme.2022.22828.