The structure of means for measuring motion parameters and determining the spatial orientation of mobile robotic platforms(MRP) for use in conditions of incomplete information and interference has been developed. The main components on the basis of which the means for measuring motion parameters and determining the spatial orientation of the MRP are synthesized have been determined: a set of navigation sensors; radar meter of MRP movement parameters; GPS module; module for analysis and recovery of lost navigation data; a module for neural network improvement of the accuracy of measuring the parameters of the MRP movement; a module for neural network improvement of the accuracy of determining the geographical coordinates of the MRP; module for neural network forecasting of geographical coordinates and route of movement of the MRP; module for collecting and storing navigation data. It has been determined that the performance of computer components, the amount of memory, power consumption, the frequency of information updates, communication interfaces, measurement accuracy, cost, weight, dimensions, temperature range, reliability, resistance to special factors, etc., are the main criteria by which the selection of the element base and components is carried out. It is shown that these criteria quite fully characterize the element base and have an unambiguous concept, and are focused on the implementation of onboard radio-electronic means of measuring movement parameters and determining spatial orientation with high operational indicators. The existing element base and navigation components used for the implementation of means for measuring motion parameters and determining the spatial orientation of the MRP are analyzed. It is shown that in order to implement intelligent means of processing data from radar motion parameter meters, inertial navigation components, and GPS modules, it is necessary to use neurochips, digital signal processing processors, systems on a chip, microcontrollers, and FPGAs. It is proposed to normalize partial criteria for the selection of the element base and navigation components according to the method of minimax standardization. An additive model and normalized partial selection criteria are selected to calculate the integrated assessment of the effectiveness of the use of the element base. The method of selecting the element base and components for the implementation of onboard radio-electronic means of measuring motion parameters and determining spatial orientation has been improved, which, due to the use of a normalized additive model with the maximum value of the integrated efficiency assessment, provides the choice of the most effective element base and components that meet the requirements of the terms of reference.
[1] Палагин, А. В., Яковлев, Ю. С. (2017). Особенности проектирования компьютерных систем на кристалле ПЛИС. Математичні машини і системи. No 2. С. 3-14. http://dspace.nbuv.gov.ua/handle/123456789/125556.
[2] Палагин, А. В, Опанасенко, В. Н. (2006). Реконфигу- рируемые вычислительные системы. К.: Просвіта, 280 с.
[3] Фролов, В. А., Пидорич, А. С. (2000). Оптимизация элементной базы электронной аппаратуры. Радио- электроника и информатика. Х.: ХТУРЭ, Вып. 1. С. 26-27.
[4] Теслюк, Т. В., Цмоць, І. Г., Ємець, В. Ф., Зелінський, А. Я. & Коваль, В. Я. (2018). Метод синтезу структур компонентів системи управління технологічними про- цесами. Моделювання та інформаційні технології, Вип. 83, С. 165-173.
[5] Prots'ko, I. (2016). Synthesis of Efficient Algorithms of DST for Types I, IV via Cyclic Convolutions. International Journal of Electronic Engineering and Computer Science, 1(1), 6-13.
[6] Elmaghraby, A. S., Losavio, M. M. (2014). Cyber security challenges in smart cities: Safety, security and privacy. Journal of Advanced Research, 5(4). https://doi.org/10.1016/j.jare.2014.02.006
[7] Yakymenko, I. Z., Kasianchuk, M. M., Ivasiev, S. V., Melnyk, A. M. & Nykolaichuk, Y. M. (2018). Realization of RSA cryptographic algorithm based on vector-module method of modular exponention. Proceedings of 14th International Conference on Advanced Trends in Radio- elecrtronics, Telecommunications and Computer Engineering (TCSET-2018). https://doi.org/10.1109/TCSET.2018.8336262
[8] Konheim, A. G. (1978). Cryptographic methods for data protection, Res. Rep. RC 7026 (No. 30100), IBM Thomas J. Watson Research Center, Yorktown Heights, N. Y.
[9] Marler, R. T. Arora, J. S. (2004). Survey of Multi-Objective Optimization Methods for Engineering. Structural and Multidisciplinary Optimization, 26, 369-395. https://doi.org/10.1007/s00158-003-0368-6
[10] Tkachenko, R., Izonin, I. (2019). Model and principles for the implementation of neural-like structures based on geometric data transformations. Advances in computer science for engineering and education. ICCSEEA-2018 Advances in intelligent systems and computing. Cham: Springer; 754: 578-587. https://doi.org/10.1007/978-3-319-91008-6_58
[11] Tsmots, I., Skorokhoda, O. (2010). Methods and VLSI- structures for neural element implementation perspective technologies and methods in mems design. Proceedings of VIth International Conference on Perspective Technologies and Methods in MEMS Design, pp. 135-135.
[12] Shagurin, I., Shaltyrev, V. (2006). Creation of systems on a chip based on FPGAs using synthesized processor cores. Problems of the development of promising microelectronic systems: Sat scientific tr M. IPPM RAS pp. 382-385.
[13] Palagin, A., Yakovlev, Yu. (2017). Features of designing computer systems based on FPGAs mathematical machines and systems; 2: 3-14.
[14] Palagin, A, Opanasenko, V. (2006). Reconfigurable computing systems. Prosvita, p. 280.
[15] Ter Maten, E. J. W., Heijmen, T. G. A., Lin, C. & El Guennouni, A. (2007). Optimization of electronic circuits. Applied and Industrial Mathematics in Italy II. World Scientific. https://doi.org/10.1142/9789812709394_0050
[16] Kravets, P., Shymkovych, V. (2020). Hardware implementation neural network controller on FPGA for stability ball on the platform. Advances in Intelligent Systems and Computing. https://doi.org/10.1007/978-3-030-16621-2_23
[17] Hu, Z., Petoukhov, S., Dychka & I., He, M. (2019). Advances in computer science for engineering and education. II ICCSEEA 2019 Advances in Intelligent Systems and Computing. Springer, Cham., pp. 247-256.
https://doi.org/10.1007/978-3-319-91008-6
[18] Teslyuk, T., Denysyuk, P., Tsmots, I., Kernytskyy, A., Teslyuk, V. & Berezsky, O. (2019). Interface-sensitive method of synthesis of microcontroller-based system structures. IEEE 15th International Conference on the Experience of Designing and Application of CAD Systems (CADSM), Polyana, Ukraine, 1-4. https://doi.org/10.1109/CADSM.2019.8779304
[19] Tsmots, I., Skorokhoda, O., & Rabyk, V. (2016). Structure and software model of a parallel-vertical multi-input adder for FPGA implementation. XIth International Scientific and Technical Conference Computer Sciences and Information Technologies (CSIT). IEEE, 158-160. https://doi.org/10.1109/STC-CSIT.2016.7589894
[20] Kellman, M., Rivest, F., Pechacek, A., Sohn, L. & Lustig, M. (2017). BarkerCoded node-pore resistive pulse sensing with built-in coincidence correction IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). New Orleans, LA. pp. 1053-1057. https://doi.org/10.1109/ICASSP.2017.7952317
[21] Tsmots, I., Skorokhoda, O., Tesliuk, T. & Rabyk, V. (2016). Designing features of hardware and software tools for intelligent processing of intensive data streams processing. IEEE First International Conference on Data Streams and Processing, DSMP, Lviv, 332-335. https://doi.org/10.1109/DSMP.2016.7583570
[22] Tsmots, S., Teslyuk, V., Teslyuk, T. & Lukashchuk, Yu. (2021). The Method and Simulation Model of Element Base Selection for Protection System Synthesis and Data Transmission. International Journal of Sensors Wireless Communications and Control, Vol. 11, Issue 5, p. 518-530. https://doi.org/10.2174/2210327910999201022194630