Structural and Coordination Features of a Hydrated Nickel-Bromide Complex with Hexamethylenetetramine

2025;
: pp. 412 - 424
1
Department of Natural Sciences, Osh State University, Kyrgyz Republic
2
Department of Chemistry and Chemical Technology, Osh State University, Kyrgyz Republic
3
Department of Chemistry and Chemical Technology, Osh State University, Kyrgyz Republic
4
Department of Natural Sciences Education, Jalal-Abad State University named after B. Osmonov, Kyrgyz Republic
5
Department of Chemistry and Chemical Technology, Osh State University, Kyrgyz Republic

The complex compound NiBr2×2(CH2)6N4×10H2O was synthesized and structurally characterized using X-ray crystallography, thermogravimetric analysis, differential scanning calorimetry, and infrared spectroscopy. The complex crystallizes in a monoclinic system (P21/c) with an octahedral nickel coordination environment, where Ni-O bond lengths range from 2.027 to 2.058 Å. Thermal analysis confirmed stability up to 150°C, followed by dehydration, HMTA degradation at 200°C, and framework breakdown above 300°C. DSC revealed distinct endothermic transitions. IR spectroscopy detected Ni-O stretching (450–600 cm-1), N-C vibrations (1300–1600 cm-1), and O-H stretching (3200–3600 cm-1), confirming hydrogen bonding interactions. These findings provide quantitative insights into the compound’s structural stability, thermal behavior, and hydrogen bonding network, with potential applications in materials science and catalysis.

[1]     Ishak, N. N. M.; Jamsari, J.; Ismail, A. Z.; Tahir, M. I. M.; Tiekink, E. R. T.; Veerakumarasivam, A.; Ravoof, T. B. S. A. Synthesis, Characterisation and Biological Studies of Mixed- Ligand Nickel (II) Complexes Containing Imidazole Derivatives and Thiosemicarbazide Schiff Bases. J. Mol. Struct. 2019, 119815, 126888. https://doi.org/10.1016/j.molstruc.2019.126888

[2]     Ou, G.; Wang, Q.; Tan, Y.; Zhou, Q. Synthesis, Structures, and Magnetism of Four One-Dimensional Complexes Using [Ni(CN)4]2− and Macrocyclic Metal Complexes. Molecules 2023, 28, 4529. https://doi.org/10.3390/molecules28114529

[3]     Alramadhan, S. A.; Hammud, H. H.; Ali, B. F.; Ghabbour, H. A.; Sarfaraz, S.; Ayub, K. Structures, Characterization and DFT Studies of Four Novel Nickel Phenanthroline Complexes. Crystals 2023, 13, 738. https://doi.org/10.3390/cryst13050738

[4]          Graf, M.; Ochs, J.; Mayer, P.; Metzler-Nolte, N.; Böttcher, H.-C. Cytotoxic Activity of Some Half-Sandwich Rhodium(III) Complexes Containing 4,4’-Disubstituted-2,2’-bipyridine Ligands. Z. Anorg. Allg. Chem. 2024, 650, e202300195. https://doi.org/10.1002/zaac.202300195

[5]     Teng, Q.; Huynh, H. V. A Unified Ligand Electronic Parameter Based on 13C NMR Spectroscopy of N-Heterocyclic Carbene Complexes. Dalton Trans. 2017, 46, 614–627. https://doi.org/10.1039/C6DT04222H

[6]     Opalade, A. A.; Labadi, I.; Gomez-Garcia, C.; Hietsoi, O.; Gerasimchuk, N. Nickel(II) Aqua Complexes with Chelating Ligands: What Happens When Water Is Gone? Cryst. Growth Des. 2022, 22, 6168–6182. https://doi.org/10.1021/acs.cgd.2c00717

[7]     Hazra, S.; Das, L. K.; Bhattacharya, R.; Drew, M. G. B.; Ghosh, A. Variations of Structures on Changing the Ratios of Metal Ions in Rare Ca(II)–Zn(II) Hetero-Metallic Self-Assembled Coordination Polymers of Hexamethylenetetramine and Benzoate. J. Indian Chem. Soc. 2021, 98, 100097. https://doi.org/10.1016/j.jics.2021.100097

[8]     Martí Valls, R.; García Rodríguez, R.; Meza Rojas, D.; Dunlop, T.; Jones, E.; Thomas, S. K.; Davies, M. L.; Holliman, P. J.; Baker, J.; Charbonneau, C. A Facile Method to Obtain Colloidal Dispersions of Nickel Hydroxide: Improving the Processing of Nickel Oxide and Facilitating its Upscaling for Perovskite-Type Solar Devices. Colloids Surf., A 2024, 6985, 134524. https://doi.org/10.1016/j.colsurfa.2024.134524

[9]     Shahadat, H. M.; Ahmad, N.; Khattak, Z. A. K.; Abdur, R. M.; Al-Hajri, R.; Al-Abri, M.; Kao, C.-M.; Younus, H. A.; Verpoort, F. Highly Active Macrocyclic Nickel(II) complex for Hydrogen Evolution Reaction in Neutral Aqueous Conditions. Int. J. Hydrogen Energy 2023, 48, 33927–3393629. https://doi.org/10.1016/j.ijhydene.2023.05.192

[10]  Wang, Y.; Wang, Y.; Huang, X.; Chen, M.; Xu, Y. Ni(NH3)62+ More Efficient than Ni(H2O)62+ and Ni(OH)2 for Catalyzing Water and Phenol Oxidation on Illuminated Bi2MoO6 with Visible Light. J. Environ. Sci. 2022, 126, 556–564. https://doi.org/10.1016/j.jes.2022.05.021

[11]  Manimaran, P.; Balasubramaniyan, S.; Azam, M.; Rajadurai, D.; Al-Resayes, S. I.; Mathubala, G.; Manikandan, A.; Muthupandi, S.; Tabassum, Z.; Khan, I. Synthesis, Spectral Characterization and Biological Activities of Co(II) and Ni(II) Mixed Ligand Complexes. Molecules 2021, 26, 823. https://doi.org/10.3390/molecules26040823

[12]  Dinzhos, R. V.; Privalko, E. G.; Privalko, V. P. Enthalpy Relaxation in the Cooling/Heating Cycles of Polyamide 6/Organoclay Nanocomposites. I. Nonisothermal Crystallization. J. Macromol. Sci. Part B Phys. 2005, 44, 421–430. https://doi.org/10.1081/MB-200061610

[13]  Privalko, V. P.; Dinzhos, R. V.; Privalko, E. G. Melting Behavior of the Nonisothermally Crystallized Polypropylene/Organosilica Nanocomposite. J. Macromol. Sci. Part B Phys. 2004, 43, 979–988. https://doi.org/10.1081/MB-200033272

[14]  Li, Y. J.; Guo, S. Z.; Feng, T.; Xie, K. F.; Dong, W. K. An Investigation into Three-Dimensional Octahedral Multi-Nuclear Ni(II)-Based Complexes Supported by a More Flexible Salamo- Type Ligand. J. Mol. Struct. 2021, 1228, 129796. https://doi.org/10.1016/j.molstruc.2020.129796

[15]  Barzegar Kiadehi, S.; Golchoubian, H. Synthesis, Characterization, Hirshfeld Surface Analysis, and Chromotropic Behavior of a Novel Copper(II) Complex with Amide-Pyridyl Ligand: Solvato-, Halo-, and thermochromism and Azide Ion Sensing. Struct. Chem. 2025, 36, 469–482. https://doi.org/10.1007/s11224-024-02384-4

[16]  Kargar, H.; Ashfaq, M.; Fallah-Mehrjardi, M.; Behjatmanesh-Ardakani, R.; Munawar, K. S.; Tahir, M. N. Synthesis, Crystal Structure, Spectral Characterization, Theoretical and Computational Studies of Ni(II), Cu(II) and Zn(II) Complexes Incorporating Schiff Base Ligand Derived from 4- (Diethylamino)salicylaldehyde. Inorg. Chim. Acta 2022, 536, 120878. https://doi.org/10.1016/j.ica.2022.120878

[17]  Kargar, H.; Ardakani, A. A.; Tahir, M. N.; Ashfaq, M.; Munawar, K. S. Synthesis, Spectral Characterization, Crystal Structure and Antibacterial Activity of Nickel(II), Copper(II) and Zinc(II) Complexes Containing ONNO Donor Schiff Base Ligands. J. Mol. Struct. 2021, 1233, 130112. https://doi.org/10.1016/j.molstruc.2021.130112

[18]  Zhang, X.; Zhang, J.; Hao, Z.; Han, Z.; Lin, J.; Lu, G. L. Nickel Complexes Bearing N,N,O-Tridentate Salicylaldiminato Ligand: Efficient Catalysts for Imines Formation via Dehydrogenative Coupling of Primary Alcohols with Amines. Organometallics 2021, 40, 3843–3853. https://doi.org/10.1021/acs.organomet.1c00552

[19]  Nemoshkalenko, V. V.; Borisenko, S. V.; Uvarov, V. N.; Yaresko, A. N.; Vakhney, A. G.; Senkevich, A. I.; Borisenko, T. N.; Borisenko, V. D. Electronic structure of the R2Ti2O7 (R =Sm-Er, Yb, Lu) oxides. Phys. Rev. B 2001, 63, 075106. https://doi.org/10.1103/PhysRevB.63.075106

[20]  Kunitskii, Y.A., Bespalov, Y.A., Korzhik, V.N. Structural heterogeneities in amorphous materials from a Ni-Nb alloy. Powder Metall Met Ceram 1988, 27, 763–767. https://doi.org/10.1007/BF00802767

[21]  Zhurakovsky, Y. A.; Korzhik, V. N.; Borisov, Y. S. Fine- structure of roentgen emission-spectra of alloy Ni-Nb in amorphous and crystalline states. Izvest. Vyssh. Ucheb. Zaved. Fiz. 1988, 31, 108–110.

[22]  Dey, P.; Islam, S.; Seth, S. K. Quantitative Analysis of the Interplay of Hydrogen Bonds in M(II)-Hexaaqua Complexes with HMTA [M(II)=Co(II), Mg(II); HMTA=Hexamethylenetetramine]. J. Mol. Struct. 2023, 1284, 135448. https://doi.org/10.1016/j.molstruc.2023.135448

[23]  Inada, Y.; Mohammed, A. M.; Loeffler, H. H.; Rode, B. M. Hydration Structure and Water Exchange Reaction of Nickel(II) Ion: Classical and QM/MM Simulations. J. Phys. Chem. A 2002, 106, 6783–6791. https://doi.org/10.1021/jp0155314

[24]  Asemave, K.; Buluku, G. T.; Abah, C. N.; Ngise, T. H. Determination of Binary Stability Constant of the Complexes of Ni(II) and Mn(II) Ions with Cysteine. ChemSearch J. 2023, 14, 84–89.

[25]  Kuznetsov, B. N.; Chesnokov, N. V.; Mikova, N. M.; Zaikovskii, V. I.; Drozdov, V. A.; Savos'kin, M. V.; Yaroshenko, A. M.; Lyubchik, S. B. Texture and catalytic properties of palladium supported on thermally expanded natural graphite. React. Kinet. Catal. Let. 2003, 80, 345–350. https://doi.org/10.1023/B:REAC.0000006144.22936.ac

[26]  Li, L. L.; Feng, S. S.; Zhang, T.; Wang, L.; Don, W. K. Counteranion-Solvent-Dependent Ni(II)-Based Complexes with π–π Interactions: Synthesis, Crystal Structure and Catalytic Properties. Polyhedron 2019, 170, 715–720. https://doi.org/10.1016/j.poly.2019.06.043

[27]  Zhang, J.-W.; Liu, W.-H.; Wang, C.-R.; Xu, S.; Liu, B.-Q.; Dong, Y.-P. Syntheses and Properties of Three Types of 3,4- Dichlorobenzoate-based Ni(II)-Ln(III) Heterometallic Clusters. ChemistrySelect. 2019, 4, 12418–12423. https://doi.org/10.1002/slct.201902628

[28]  Mehmeti, B.; Kelmendi, J.; Iiljazi-Shahiqi, D.; Azizi, B.; Jakovljevic, S.; Haliti, F.; Anic-Milosevic, S. Comparison of Shear Bond Strength Orthodontic Brackets Bonded to Zirconia and Lithium Disilicate Crowns. Acta Stomatol. Croat. 2019, 53, 17–27. https://doi.org/10.15644/asc53/1/2

[29]  Ushenko, Y. A.; Dubolazov, A. V.; Angelsky, A. P.; Sidor, M. I.; Bodnar, G. B.; Koval, G.; Zabolotna, N. I.; Smolarz, A.; Junisbekov, M. S. Laser polarization fluorescence of the networks of optically anisotropic biological crystals. Proceed. SPIE – Int. Soc. Optic. Engin. 2013, 8698, 869809. https://doi.org/10.1117/12.2019350

[30]  Takahashi, K.; Nakamura, T.; Akutagawa, T. Dynamic Supramolecular Cations in Conductive and Magnetic [Ni(dmit)2]), NC (1300–Crystals. Coord. Chem. Rev. 2023, 475, 214881. https://doi.org/10.1016/j.ccr.2022.214881

[31]  Li, J. X.; Zhang, Y. H.; Du, Z. X.; Feng, X. One-Pot Solvothermal Synthesis of Mononuclear and Oxalate-Bridged Binuclear Nickel Compounds: Structural Analyses, Conformation Alteration, and Magnetic Properties. Inorg. Chim. Acta 2021, 530, 120697. https://doi.org/10.1016/j.ica.2021.120697 

[32]  Newman-Stonebraker, S. H.; Raab, T. J.; Roshandel, H.; Doyle, A. G. Synthesis of Nickel(I)-Bromide Complexes via Oxidation and Ligand Displacement: Evaluation of Ligand Effects on Speciation and Reactivity. J. Am. Chem. Soc. 2023, 145, 19368–19377. https://doi.org/10.1021/jacs.3c06233

[33]  Liu, R.; Liu, Y.; Yang, W.; Li, X.; Feng, L. Chromium- based Complexes Bearing Aminophosphine and Phosphine-Imine- Pyrryl Ligands for Selective Ethylene tri/Tetramerization. ACS Omega 2023, 8, 18290–18298. https://doi.org/10.1021/acsomega.3c02083

[34]  Pérez-Bitrián, A.; Hoffmann, K. F.; Krause, K. B.; Thiele, G.; Limberg, C.; Riedel, S. Unravelling the Role of the Pentafluoroorthotellurate Group as a Ligand in Nickel Chemistry. Chem. Eur. J. 2022, 28, e202202016. https://doi.org/10.1002/chem.202202016

[35]  Sakthivel, R. V.; Sankudevan, P.; Vennila, P.; Venkatesh, G.; Kaya, S.; Serdaroğlu, G. Experimental and Theoretical Analysis of Molecular Structure, Vibrational Spectra and Biological Properties of the New Co(II), Ni(II) and Cu(II) Schiff Base Metal Complexes. J. Mol. Struct. 2021, 1233, 130097. https://doi.org/10.1016/j.molstruc.2021.130097

[36]  Stasevych, M.; Zvarych, V.; Dronik, M.; Sozanskyi, M.; Khomyak, S. Application of Infrared Spectroscopy and X-ray Powder Diffractometry for Assessment of the Qualitative Composition of Components in a Pharmaceutical Formulation. Chem. Chem. Technol. 2023, 17, 510–517. https://doi.org/10.23939/chcht17.03.510

[37]  Hrynyshyn, K.; Skorokhoda, V.; Chervinskyy, T. Study on the Composition and Properties of Pyrolysis Pyrocondensate of Used Tires. Chem. Chem. Technol. 2022, 16, 159–163. https://doi.org/10.23939/chcht16.01.159