MQTT Latency Evaluation in Cloud-Based Spectrometer Control

2025;
: pp. 151 - 157
1
Ivan Franko National University of Lviv, Ukraine
2
Institute of Solid State Physics, University of Latvia, Latvia

This paper investigates latency characteristics of MQTT communication in remote spectrometer control. A comparative study of AWS IoT Core and HiveMQ broker implementations across various Quality of Service levels has been presented. Methodologies include detailed measurements of control command and data feedback latencies, followed by statistical analysis. Initial findings have demonstrated a monotonic increase in latency and its variability (jitter) as QoS levels rise for both brokers, confirming the inherent MQTT trade-off between reliability and speed. AWS IoT Core consistently exhibits lower modal latencies and more concentrated distributions across all QoS levels compared to HiveMQ, suggesting superior average performance and consistency. The presented analysis has provided insights into how broker choice and QoS configuration impact remote control performance. Results can be useful for the development of more reliable, low- latency, and efficient remote laboratory systems for advanced scientific experimentation.

[1] Ammar, M., Russello, G., & Crispo, B. (2017). Internet of Things: A survey on the security of IoT frameworks. Journal of Information Security and Applications, 38, 8. DOI: https://doi.org/10.1016/j.jisa.2017.11.002

[2] Dizdarević, J., Michalke, M., & Jukan, A. (2023). Engineering and Experimentally Benchmarking Open Source MQTT Broker Implementations. arXiv (Cornell University).  DOI: https://doi.org/10.48550/arxiv.2305.13893

[3] Handosa, M., Gračanin, D., & Elmongui, H. G. (2017). Performance evaluation of MQTT-based internet of things systems. 2018 Winter Simulation Conference (WSC), 4544. DOI: 10.1109/WSC.2017.8248196

[4] Hmissi, F., & Ouni, S. (2024). A survey on application layer protocols for iot networks. arXiv preprint arXiv:2405.15901.     DOI: https://doi.org/10.48550/arxiv.2405.15901

[5]  Jeddou, S., Fernández, F., Díez, L., Baïna, A., Abdallah, N., & Agüero, R. (2022). Delay and Energy Consumption of MQTT over QUIC: An Empirical Characterization Using Commercial-Off-The-Shelf Devices. Sensors, 22(10), 3694. DOI: https://doi.org/10.3390/s22103694

[6] Kang, Z., Canady, R., Dubey, A., Gokhale, A., Shekhar, S., & Sedlacek, M. (2020, December). A study of publish/subscribe middleware    under    different     iot    traffic    conditions. In Proceedings of the International Workshop on Middleware and Applications for the Internet of Things (pp. 7-12). DOI: https://doi.org/10.1145/3429881.3430109

[7] Kirwan, R. F., Abbas, F., Atmosukarto, I., Loo, A. W. Y., Lim, J. H., & Yeo, S. (2023). Scalable agritech growbox architecture. Frontiers in the Internet of Things, 2, 1256163. DOI: https://doi.org/10.3389/friot.2023.1256163

[8] Mishra, B., Mishra, B., & Kertész, A. (2021).  Stress- Testing MQTT Brokers: A Comparative Analysis of Performance Measurements. Energies, 14(18), 5817. DOI: https://doi.org/10.3390/en14185817

[9] Palmese, F., Redondi, A. E. C., & Cesana, M. (2022). Adaptive Quality of Service Control for MQTT-SN. Sensors, 22(22),    8852. DOI: https://doi.org/10.3390/s22228852

[10] Patil, V. B., & Khodade, P. S. (2025). Development and applications of an affordable DIY optical spectrometer using a webcam. Journal of Optics, 1-4. DOI: https://doi.org/10.1007/s12596-025-02714-7

[11] Popoola, O., Rodrigues, M., Marchang, J., Shenfield, A., Ikpehai, A., & Popoola, J. (2023). A critical literature review of security and privacy in smart home healthcare schemes adopting IoT & blockchain: Problems, challenges and solutions. Blockchain Research and Applications, 5(2), 100178. DOI: https://doi.org/10.1016/j.bcra.2023.100178

[12] Rager, D., & Andersen, A. (2021, October). NREL Stratus-Enabling Workflows to Fuse Data Streams, Modeling, Simulation,  and Machine Learning. In Smoky Mountains Computational Sciences and Engineering Conference (pp. 227-246). Cham: Springer International Publishing. URL:  https://www.osti.gov/biblio/1899966

[13] Sánchez, C. B., Redondo, R. P. D., Vilas, A. F., & Sánchez, Á. (2018). Spectrophotometers for labs: A cost- efficient solution based on smartphones. Computer Applications in Engineering Education, 27(2), 371. DOI: https://doi.org/10.1002/cae.22081

[14]  Silva, D. M. A. da, Carvalho, L. I., Soares, J., & Sofia, R. C. (2021). A Performance Analysis of Internet of Things Networking Protocols: Evaluating MQTT, CoAP, OPC UA. Applied Sciences, 11(11), 4879. DOI: https://doi.org/10.3390/app11114879

[15] Silva, T. F. da, Rodrigues, C. L., Tabacniks, M. H., Pereira, H. D. C., Saramela, T. B., & Guimarães, R. O. (2020). Ion beam analysis and big data: How data science can support next-generation instrumentation. Nuclear Instruments and Methods in Physics Research Section B Beam Interactions with Materials and Atoms, 478, 111. DOI: https://doi.org/10.1016/j.nimb.2020.05.027

[16] Tareq, R. W., & Khaleel, T. A. (2021). Implementation of MQTT Protocol in Health Care Based on IoT Systems: A Study. International Journal of Electrical and Computer Engineering Systems, 12(4), 215. DOI: https://doi.org/10.32985/ijeces.12.4.5

[17] Tunēns, G., Einbergs, E., Laganovska, K., Zolotarjovs, A., Vilks, K., Skuja, L., & Šmits, K. (2024). Optical fiber- based open source low cost portable spectrometer system. HardwareX, 18. DOI: https://doi.org/10.1016/j.ohx. 2024.e00530

[18] Ullah, M., Nardelli, P. H. J., Wolff, A., & Smolander, K. (2020). Twenty-One Key Factors to Choose an IoT Platform: Theoretical Framework and Its Applications. IEEE Internet of Things Journal, 7(10), 10111. DOI: 10.1109/JIOT.2020.3000056

[19]  Yao, C., Chen, M., Yan, T., Ming, L., Cheng, Q., & Penty, R. (2023). Broadband picometer-scale resolution on-chip spectrometer with reconfigurable photonics. Light: Science & Applications, 12(1), 156. DOI: https://doi.org/10.1038/ s41377-023-01195-2

[20] Krupych, A., Karbovnyk, I. (2025). Computerized Optical Experiments with Portable Fiber Optic Spectrometers and Amazon Web Services Cloud Integration. Electronics and information technologies, 29, 123-134. DOI: http://dx.doi.org/10.30970/eli.29.11