Object of study: the mechanism for improving vehicle stability on low-friction surfaces within the active-safety control loop. Subject of study: the formation of lateral force in the tire–road interaction and its use for reproducing (accounting for) limit handling modes and adaptive stability control. Because many existing stability-assessment methods rely on simplified wheel/tire rolling models that do not capture the full set of factors governing vehicle dynamics, we develop a framework that explicitly represents the nonlinear nature of tire–road interaction and integrates tire-material properties, pavement microtexture, and dynamic loading into a single mathematical model. The practical significance is in the possibility of embedding the proposed model into ESP/ABS/TCS algorithms for online identification of road-friction parameters and adaptive tuning of intervention thresholds according to current thermoclimatic conditions. At the engineering-design level, the method enables the construction of stability “maps” for various operating scenarios and can be used for tire selection, test-maneuver planning, and calibration of yaw-stability functions. The proposed approach is novel in that it preserves universality while remaining extendable to account for tire-inflation pressure, tread wear, residual tread depth, and non-uniform axle load distribution. The results reveal a sigmoidal temperature sensitivity near 0 °C, a concave-down degradation of stability with increasing wetness, and a pronounced reduction in maximum lateral force capacity in icy scenarios. Comparison with quasi-linear estimates reveals that neglecting the post-peak decay of the lateral force leads to an overestimation of the tire’s limit capability and an inflated stability margin during maneuvers. Overall, enhancing rolling models with explicit nonlinear effects is an effective tool for more accurate reproduction of limit modes and for reducing accident risk under reduced-friction conditions. Application domain: automotive production and automotive service operations.
1. Sakhno, V., Poliakov, V., Bilichenko, V., Murovany, I., Kotyra, A., Duskazaev, G., & Baitussupov, D. (2021). Selection and reasoning of the bus rapid transit component scheme of huge capacity. In Mechatronic Systems 1 (pp. 233-242). DOI: 10.1201/9781003224136-20 (in English).
https://doi.org/10.1201/9781003224136-20
2. Podrugalo, M., Garmash, V., Horielyshev, S., Baulin, D., Yarovyi, H. & Sydorenko I. (2023). Polipshennia manevrenosti kolisnoho transportnoho zasobu shliakhom vdoskonalennia sposobu upravlinnia povorotom [Improving maneuverability of a wheeled vehicle by improving turn control method]. Visnyk Natsionalnoho tekhnichnoho universytetu «KhPI» [Bulletin of the National Technical University «KhPI»], 1, 68-75. DOI: 10.20998/2079-0775.2023.1.07 (in Ukrainian).
https://doi.org/10.20998/2079-0775.2023.1.07
3. Klets, D., Pavlov, S., & Yarovyi, H. (2024). Otsinka manevrenosti chotyryvisnykh avtomobiliv iz dvoma povorotnymy dvovisnymy platformamy [Evaluation of maneuverability of four-wheel vehicles with two rotating platforms]. Zbirnyk naukovykh prats DNDI VSOVT [Scientific works of State Scientific Research Institute of AME TC], 2(20), 36-40. DOI: 10.37701/dndivsovt.20.2024.04 (in Ukrainian).
https://doi.org/10.37701/dndivsovt.20.2024.04
4. Volkov, V. P., Hrytsuk, I. V., Volkova, T. V., & Volkov, Yu. V. (2019). Information technologies in the technical operation of automobiles. In Modern Technologies in Road Transport and Mechanical Engineering: Proceedings of the International Scientific and Practical Conference, (pp. 72-74). Retrieved from: https://dspace.khadi.kharkov.ua/handle/123456789/7878 (in Ukrainian).
5. Dick, W., & Holle, M. (2003). Entwicklung einer Überlagerungslenkung. ATZ-Automobiltechnische Zeitschrift, 105(5), 448-456. DOI: 10.1007/BF03221561 (іn German)
https://doi.org/10.1007/BF03221561
6. Song, T., & Zhu, W. X. (2020). Study on state feedback control strategy for car-following system. Physica A: Statistical Mechanics and its Applications, 558, 124938. DOI: 10.1016/j.physa.2020.124938 (in English).
https://doi.org/10.1016/j.physa.2020.124938
7. Li, L., d'Andréa-Novel, B., & Quadrat, A. (2020). Longitudinal and lateral control for four wheel steering vehicles. IFAC-PapersOnLine, 53(2), 15713-15718. DOI: 10.1016/j.ifacol.2020.12.2573 (in English).
https://doi.org/10.1016/j.ifacol.2020.12.2573
8. Moon, C. (2023). Design and Implementation of Hardware-in-the-Loop Simulation Environment Using System Identification Method for Independent Rear Wheel Steering System. Machines, 11(11), 996. DOI: 10.3390/machines11110996 (in English).
https://doi.org/10.3390/machines11110996
9. Yang, H., Liu, W., Chen, L., & Yu, F. (2021). An adaptive hierarchical control approach of vehicle handling stability improvement based on Steer-by-Wire Systems. Mechatronics, 77, 102583. DOI: 10.1016/j.mechatronics.2021. 102583 (in English).
https://doi.org/10.1016/j.mechatronics.2021.102583
10. Li, B., & Yu, F. (2009, June). Optimal model following control of four-wheel active steering vehicle. In 2009 International Conference on Information and Automation (pp. 881-886). IEEE. DOI: 10.1109/ICINFA.2009.5205043 (in English).
https://doi.org/10.1109/ICINFA.2009.5205043
11. Wang, L., Pang, H., Wang, P., Liu, M., & Hu, C. (2023). A yaw stability-guaranteed hierarchical coordination control strategy for four-wheel drive electric vehicles using an unscented Kalman filter. Journal of the Franklin Institute, 360(13), 9663-9688. DOI: 10.1016/j.jfranklin.2023.06.048 (in English).
https://doi.org/10.1016/j.jfranklin.2023.06.048
12. Chen, G., Jiang, Y., Tang, Y., & Xu, X. (2023). Revised adaptive active disturbance rejection sliding mode control strategy for vertical stability of active hydro-pneumatic suspension. ISA transactions, 132, 490-507. DOI: 10.1016/j.isatra.2022.06.008 (in English).
https://doi.org/10.1016/j.isatra.2022.06.008
13. Luo, J., Li, P., Li, P., & Cai, Q. (2021). Observer-based multi-objective integrated control for vehicle lateral stability and active suspension design. Journal of Sound and Vibration, 508, 116222. DOI: 10.1016/j.jsv.2021.116222 (in English).
https://doi.org/10.1016/j.jsv.2021.116222
14. Lucet, E., Lenain, R., & Grand, C. (2015). Dynamic path tracking control of a vehicle on slippery terrain. Control engineering practice, 42, 60-73. DOI: 10.1016/j.conengprac.2015.05.008 (in English).
https://doi.org/10.1016/j.conengprac.2015.05.008
15. Wang, S. T., Zhu, W. X., & Ma, X. L. (2023). Mixed traffic system with multiple vehicle types and autonomous vehicle platoon: Modeling, stability analysis and control strategy. Physica A: Statistical Mechanics and its Applications, 632, 129293. DOI: 10.1016/j.physa.2023.129293 (in English).
https://doi.org/10.1016/j.physa.2023.129293
16. Salaani, M. K., Heydinger, G. J., & Grygier, P. A. (2006). Measurement and modeling of tire forces on a low coefficient surface. SAE Transactions, 392-399. DOI: 10.4271/2006-01-0559 (in English).
https://doi.org/10.4271/2006-01-0559
17. Koo, S. L., Tan, H. S., & Tomizuka, M. (2004, June). Nonlinear tire lateral force versus slip angle curve identification. In Proceedings of the 2004 American Control Conference (pp. 2128-2133). IEEE. DOI: 10.23919/ACC.2004.1383775 (in English).
https://doi.org/10.23919/ACC.2004.1383775
18. Flintsch, G. W., Izeppi, E. D. L., McGhee, K. K., & Roa, J. A. (2009). Evaluation of international friction index coefficients for various devices. Transportation research record, 2094(1), 136-143. DOI: 10.3141/2094-15 (in English).
https://doi.org/10.3141/2094-15
19. Gao, J., Fan, J., Gao, C., & Song, L. (2025). Friction Prediction in Asphalt Pavements: The Role of Separated Macro-and Micro-Texture Parameters Under Dry and Wet Conditions. Lubricants, 13(4), 138. DOI: 10.3390/lubricants13040138 (in English).
https://doi.org/10.3390/lubricants13040138