The paper presents an approach to generating routes for agricultural machinery based on digital field maps using QGIS software and satellite navigation technologies. The proposed algorithm includes the following steps: preparing input data, converting field boundaries to a metric projection, creating a rectangular grid with a step equal to the working width of the implement, generating cell centroids, assigning them ordered route indices, and building a continuous trajectory of machine passes. To improve practical usability, line geometry smoothing reduces the number of sharp turns. The resulting routes are exported to formats compatible with GNSS terminals and autopilot systems. The route-generation method relies on open-source software, does not require specialized commercial platforms, and can be integrated into precision farming workflows to reduce overlaps, optimize fuel use, and lower the technogenic impact on soil. The approach can serve as a practical tool for agricultural enterprises and as a teaching example for training specialists in GNSS technologies in the agricultural sector.
- Amongo, R. M., Saludes, R., Gallegos, R. K., Relativo, P. L., Duminding, R. S., Pantano, A. D., Cunan, J. J. P., & Lalap- Borja, G. N. (2023). A GIS-based land suitability model for agricultural tractors in CALABARZON Region, Philippines. Scientific Reports, 13, 23872. DOI: https://doi.org/10.1038/s41598-023-45071-w
- Donat, M., Geistert, J., Grahmann, K., & Bellingrath-Kimura, S. D. (2023). Field path optimization to reduce headland and turning maneuvers at regional scales: Automated detection of cultivation direction in the state of Brandenburg, Germany. Precision Agriculture, 24, 2126–2147. DOI: https://doi.org/10.1007/s11119-023-10033-9
- Gołąb, J., & Pirowski, T. (2019). An attempt at the automation of the routing of mountain forest roads with the use of GIS spatial analyses. Geomatics and Environmental Engineering, 13(4). DOI: https://doi.org/10.7494/geom.2019.13.4.17
- Mukhamedova, K. R., Cherepkova, N. P., Korotkov, A. V., Dagasheva, Z. B., & Tvaronavičien¹ , M. (2022). Digitalisation of agricultural production for precision farming: A case study. Sustainability, 14(22), 14802. DOI: https://doi.org/10.3390/su142214802
- Mustashkina, D., Khamanov, M., Kalimullin, M., & Karpova, N. (2021). Development of agriculture based on geographic information technologies. E3S Web of Conferences, 282, 07019. DOI: https://doi.org/10.1051/e3sconf/202128207019 Oymatov, R., & Safayev, S. (2021). Creation of a complex electronic map of agriculture and agro-geo databases using GIS
- techniques. E3S Web of Conferences, 258, 03020. DOI: https://doi.org/10.1051/e3sconf/202125803020
- Oymatov, R., Reymov, M., Narbaev, S., Bakhriyev, M., Maksudov, R., & Salimova, B. (2023). Development of the technological system of creating an electronic map of agriculture using GIS technology. E3S Web of Conferences, 386, 04002. DOI: https://doi.org/10.1051/e3sconf/202338604002
- Padhiary, M., Saha, D., Kumar, R., Sethi, L. N., & Kumar, A. (2024). Enhancing precision agriculture: A comprehensive review of machine learning and AI vision applications in all-terrain vehicle for farm automation. Smart Agricultural Technology, 8, 100483. DOI: https://doi.org/10.1016/j.atech.2024.100483
- Phasinam, T., Phasinam, K., U-kaew, A., Piyathamrongchai, K., Hatitara, R., Raghavan, V., Nemoto, T., & Sitthichai, A. (2025). Real-time monitoring and positioning of agricultural tractors using a low-cost GPS and IoT device. International Journal of Geoinformatics, 21(1), 111–120. DOI: https://doi.org/10.52939/ijg.v21i1.3799
- QGIS Association. (2025). QGIS overview. QGIS.org. November 12, 2025. Retrieved from https://qgis.org/project/overview/
- Ryzhok, Z., & Stupen, R. (2025). Zastosuvannia metodiv shtuchnoho intelektu dlia prostorovoho analizu silskohospodarskoho zemlekorystuvannia u heoinformatsiinii systemi QGIS. Tochne zemlerobstvo, 1 (1), 21–27. DOI: https://doi.org/10.23939/pa2025.01.021
- Zhang, S., Liu, H., Cao, X., & Meng, Z. (2024). Agricultural machinery movement trajectory recognition method based on two-stage joint clustering. Agriculture, 14, 2294. DOI: https://doi.org/10.3390/agriculture14112294
- Zhou, J., Wang, X., Zhang, R., Feng, Q., Ma, W. (2013). Automatic Navigation Based on Navigation Map of Agricultural Machine. In: Li, D., Chen, Y. (eds) Computer and Computing Technologies in Agriculture VI. CCTA 2012. IFIP Advances in Information and Communication Technology, vol 392. Springer, Berlin, Heidelberg. DOI: https://doi.org/10.1007/978-3-642-36124-1_37