The article presents the structure and operating principles of an electric drive system for a vehicle with a hybrid energy storage system that combines a fuel cell and a supercapacitor connected via controlled DC-DC converters with a common DC bus. The traction drive functions are performed by a brushless DC motor (BLDC) powered by three-phase voltage from an inverter connected to the DC bus. The fuel cell is the main source of energy, ensuring stable operation of the system in nominal modes, while the supercapacitor compensates for peak loads, improves dynamics and increases recovery efficiency.
The work justifies the choice of the architecture of a hybrid fuel cell-supercapacitor energy storage system and analyses energy flows and interactions between components through controlled DC-DC converters. Particular attention is paid to the implementation of the energy- forming control principle in a cascade with a PI speed controller, which ensures the coordination of energy sources, extends the fuel cell’s service life, and performs drive tasks. The proposed approach is aimed at improving system controllability and drive stability during transient processes.
The research results confirm the feasibility of using a combined ‘fuel cell – supercapacitor’ architecture in transport electric drives with energy-shaping control. Such a system ensures high efficiency, voltage stability in the common DC bus, rapid response to load changes, and expands the possibilities for energy recovery during braking.
- Urooj A., Nasir A. Review of Hybrid Energy Storage Systems for Hybrid Electric Vehicles // World Electr. Veh. J. – 2024. – Vol. 15. – P. 342. – DOI: https://doi.org/10.3390/wevj15080342
- Mounica V., Obulesu Y.P. Hybrid Power Management Strategy with Fuel Cell, Battery, and Supercapacitor for Fuel Economy in Hybrid Electric Vehicle Application // Energies. – 2022. – Vol. 15. – P. 4185. – DOI: https://doi.org/10.3390/en15124185
- IEA. Global EV Outlook 2024. Paris: IEA, 2024. URL: https://www.iea.org/reports/global-ev-outlook-2024, Licence: CC BY 4.0.
- Wangsupphaphol A., Phichaisawat S., Nik Idris N.R., Jusoh A., Muhamad N.D., Lengkayan R. A Systematic Review of Energy Management Systems for Battery/Supercapacitor Electric Vehicle Applications // Sustainability. – 2023. – Vol. 15. – P. 11200. – DOI: https://doi.org/10.3390/su151411200
- Mariasiu F., Kelemen E.A. Analysis of the Energy Efficiency of a Hybrid Energy Storage System for an Electric Vehicle // Batteries. – 2023. – Vol. 9. – P. 419. – DOI: https://doi.org/10.3390/batteries9080419
- Adeyinka A.M., Esan O.C., Ijaola A.O. et al. Advancements in hybrid energy storage systems for enhancing renewable energy-to-grid integration // Sustainable Energy Res. – 2024. – Vol. 11. – P. 26. – DOI: https://doi.org/10.1186/s40807-024-00120-4
- ElGhanam E., Sharf H., Hassan M.S., Osman A. Performance Evaluation of Hybrid Battery–Supercapacitor- Based Energy Storage Systems for Urban-Driven Electric Vehicles // Sustainability. – 2023. – Vol. 15. – P. 8747. – DOI: https://doi.org/10.3390/su15118747
- Shchur I., Kuzyk R.-I., Lis M. Structural decomposition of the passivity-based control system of wind–solar power generating and hybrid battery–supercapacitor energy storage complex // Dynamics. – 2024. – Vol. 4. – S. 830–844.
- Quan R., Guo H., Li X., Zhang J., Chang Y. A real-time energy management strategy for fuel cell vehicle based on Pontryagin's minimum principle // iScience. – 2024. – Vol. 27(4). – P. 109473. – DOI: 10.1016/j.isci.2024.109473.
- Beltrán C.A., Diaz-Saldierna L.H., Langarica-Cordoba D., Martinez-Rodriguez P.R. Passivity-Based Control for Output Voltage Regulation in a Fuel Cell/Boost Converter System // Micromachines. – 2023. – Vol. 14. – P. 187. – DOI: https://doi.org/10.3390/mi14010187
- Guo J., He H., Jia C., Guo S. The Energy Management Strategies for Fuel Cell Electric Vehicles: An Overview and Future Directions // World Electr. Veh. J. – 2025. – Vol. 16. – P. 542. – DOI: https://doi.org/10.3390/wevj16090542
- Chandu V.V., Muralee Gopi R., Ramesh R. Review of battery-supercapacitor hybrid energy storage systems for electric vehicles // Results in Engineering. – 2024. – Vol. 24. – P. 103598. – DOI: https://doi.org/10.1016/j.rineng.2024.103598
- Adem Siraj Mohammed, Samson Mekbib Atnaw, Ayodeji Olalekan Salau, Joy Nnenna Eneh. Review of optimal sizing and power management strategies for fuel cell/battery/super capacitor hybrid electric vehicles // Energy Reports. – 2023. – Vol. 9. – Pp. 2213–2228. – DOI: https://doi.org/10.1016/j.egyr.2023.01.042
- Rubel Md., Park Yunho, Park Haneul, Woo Junghyun, Son Hyunwoo. Hybrid Energy Storage Systems, Converter Topologies, Energy Management Systems, and Future Prospects of Green Marine Technology: A Comprehensive Review // IEEE Access. – 2025. – Pp. 1–1. – DOI: 10.1109/ACCESS.2025.3595762.
- Ahmed G. Abo-Khalil, Ahmed Sobhy, Mohammad Ali Abdelkareem, A.G. Olabi. Advancements and challenges in hybrid energy storage systems: Components, control strategies, and future directions // International Journal of Thermofluids. – 2023. – Vol. 20. – P. 100477. – DOI: https://doi.org/10.1016/j.ijft.2023.100477
- Wai C.K., Sadeq T., Hau L.C. Advanced Adaptive Rule-Based Energy Management for Hybrid Energy Storage Systems (HESSs) to Enhance the Driving Range of Electric Vehicles // Vehicles. – 2025. – Vol. 7. – P. 6. – DOI: https://doi.org/10.3390/vehicles7010006
- Cheng L., Acuna P., Aguilera R., Jiang J., Flecther J., Baier C. Model predictive control for Energy Management of a hybrid energy storage system in Light Rail Vehicles. – 2017. – Pp. 683–688. – DOI: 10.1109/CPE.2017.7915255.
- Tang X., Chen J., Qin Y. et al. Reinforcement Learning-Based Energy Management for Hybrid Power Systems: State-of-the-Art Survey, Review, and Perspectives // Chin. J. Mech. Eng. – 2024. – Vol. 37. – P. 43. – DOI: https://doi.org/10.1186/s10033-024-01026-4
- Fracica-Rodriguez F., Acevedo-Iles M., Romero-Quete D., Martinez W., Cortes C.A. Passivity-Based Control for Transient Power Sharing and State of Charge Restoration in a Semi-Active Supercapacitor-Battery System// Batteries. – 2024. – Vol. 10. – P. 322. – DOI: https://doi.org/10.3390/batteries10090322
- Ou M., Gong P., Guo H., Li G. A Passivity-Based Control Integrated with Virtual DC Motor Strategy for Boost Converters Feeding Constant Power Loads // Electronics. – 2025. – Vol. 14. – P. 2909. – DOI: https://doi.org/10.3390/electronics14142909
- Tabassum A.A., Cho H.M., Mahmud M.I. Essential Features and Torque Minimization Techniques for Brushless Direct Current Motor Controllers in Electric Vehicles // Energies. – 2024. – Vol. 17. – P. 4562. – DOI: https://doi.org/10.3390/en17184562
- Montenegro-Oviedo J.A., Ramos-Paja C.A., Orozco-Gutierrez M.L., Franco-Mejía E., Serna-Garcés S.I. Design and Experimental Validation of a Battery/Supercapacitor Hybrid Energy Storage System Based on an Adaptive LQG Controller // Appl. Syst. Innov. – 2025. – Vol. 8. – P. 1. – DOI: https://doi.org/10.3390/asi8010001
- Aslam M.U., Shakhawat N.S.B., Shah R., Amjady N., Miah M.S., Amin B.M.R. Hybrid Energy Storage Modeling and Control for Power System Operation Studies: A Survey // Energies. – 2024. – Vol. 17. – P. 5976.– DOI: https://doi.org/10.3390/en17235976
- van der Schaft A., Jeltsema D. Port-Hamiltonian Systems Theory: An Introductory Overview // Foundations and Trends R in Systems and Control. – 2014. – Vol. 1, No. 2–3. – Pp. 173–378.
- Shchur I. Z., Biletskyi Y. O., Energy-shaping control of non-linear electromechanical systems with permanent magnet synchronous machines. Monograph. Lvіv: Vidavnictvo L'vіvs'koi polіtehnіki, 2016. 174 p. (Ukr).
- Aly M., Mohamed E.A., Rezk H., Nassef A.M., Elhosseini M.A., Shawky A. An improved optimally designed fuzzy logic-based MPPT method for maximizing energy extraction of PEMFC in green buildings // Energies. – 2023. – Vol. 16. – P. 1197. – https://doi.org/10.3390/en16031197