Thermal Camera

Enhancing Images in Poor Lighting Conditions Through Fusion of Optical and Thermal Camera Data

The goal of the article is to provide a methodology of improving images quality in low-light conditions trough fusion of data received from telecamera and thermal camera. Data from thermal camera uses for compensation of significant illumination reduction in poor lighting conditions and allow keep required level of information. Proposed method establishes dynamic regulation of fusion coefficients depending on brightness level to minimize artifacts, increase edge sharpness, and improve object detectability.

PRECONDITIONS FOR THE CREATION OF A MEAT FRESHNESS CONTROL AND IDENTIFICATION SYSTEM

The relevance of creating a comprehensive system for meat control and identification to determine its freshness level has been demonstrated in the study. The drawbacks of traditional organoleptic and laboratory methods commonly used for meat inspection were analyzed. The authors presented the advantages and challenges of employing an electronic nose. A design for a meat control and identification system was proposed, which includes an Arduino Uno microcontroller, Raspberry Pi, USB to TTL adapter, gas sensors, color sensor, thermal camera, and image sensor.