INTERPOLATION OF TABULAR FUNCTIONS FROM ONE INDEPENDENT VARIABLE USING THE TAYLOR POLYNOMIAL

2022;
: 1-17
https://doi.org/https://doi.org/10.23939/ujit2022.02.001
Received: October 08, 2022
Accepted: October 17, 2022

Цитування за ДСТУ: Грицюк Ю І., Тушницький Р Б. Інтерполяція табличних функцій від однієї незалежної змінної з використанням многочлена Тейлора. Український журнал інформаційних технологій. 2022, т. 4, № 2. С. 01-17.

Citation APA: Hrytsiuk, Yu. I., & Tushnytskyy, R. B. (2022). Interpolation of tabular functions from one independent variable using the Taylor polynomial. Ukrainian Journal of Information Technology, 4(2), 01-17. https://doi.ora/10.23939/uiH2022.02.001

1
Lviv Polytechnic National University, Lviv, Ukraine
2
Lviv Polytechnic National University, Lviv, Ukraine

A method of local interpolation of tabular functions from one independent variable using the Taylor polynomial of the nth degree in arbitrarily located interpolation nodes has been developed. This makes it possible to calculate intermediate values of tabular functions between interpolation nodes. The conducted analysis of the latest research and publications in the field of interpolation of tabular functions showed that the main part of the research is a strict theory of interpolation, i.e. clarification of its fundamental mathematical provisions. Some features of the interpolation of tabular functions from one independent variable using the Taylor polynomial of the nth degree are considered, namely: the solution algorithm and mathematical formulation of the interpolation problem are given; its formalized notation is given, as well as the matrix notation of interpolation procedures for certain values of the argument. A scalar algorithm for solving the problem of interpolation of tabular functions from one independent variable using the Taylor polynomial of the 2nd, 3rd, and 4th degrees has been developed. The simplicity and clarity of this algorithm is one of its advantages, but the algorithm is inconvenient for software implementation. The mathematical formulation of the problem of interpolation of tabular functions in terms of matrix algebra is given. The interpolation task is reduced to performing the following actions: based on the values of nodal points known from the table, it is necessary to calculate the Taylor matrix of the nth degree; based on the function values specified in the table a column vector of interpolation nodes should be formed; solve a linear system of algebraic equations, the root of which is the numerical coefficients of the Taylor polynomial of the nth degree.

A method of calculating the coefficients of the interpolant, given by the Taylor polynomial of the nth degree for one independent variable has been developed. The essence of the method reduces to the product of the matrix, inverse of the Taylor matrix, which is determined by the nodal points of the tabular function, by a column vector containing the values of the interpolation nodes. Specific examples demonstrate the peculiarities of calculating the interpolant coefficients of the 2nd, 3rd and 4th degrees for one independent variable, and for each of them the interpolated value of the function at a given point is calculated. Calculations were performed in the Excel environment, which by analogy can be successfully implemented in any other computing environment.

[1]     Alain Le Méhauté. (1993). On Multivariate Hermite Polynomial Interpolation. Series in Approximations and Decompositions. Multivariate Approximation: From CAGD to Wavelets, 179–192. https://doi.org/10.1142/9789814503754_0010

[2]     Andrunyk, V. A., Vysotska, V. A., & Pasichnyk V. V. (Ed.), et al. (2018). Numerical methods in computer science: textbook. Issue 2. Lviv: Novy svit-2000, 536 p. [In Ukrainian].

[3]     Boyko, L. T. (2009). Fundamentals of numerical methods: textbook. Dnipropetrovsk: DNU Publishing House, 244 p. [In Ukrainian].

[4]     Bruno Després, & Maxime Herda. (2020). Computation of Sum of Squares Polynomials from Data Points. SIAM Journal on Numerical Analysis, 58(3). https://doi.org/10.1137/19M1273955

[5]     Chapter 1: Computer Arithmetic. (2019). An Introduction to Numerical Computation, 1–19. https://doi.org/10.1142/9789811204425_0001

[6]     Chapter 1: Fundamentals: Taylor Series. (2022). Numerical Methods for Engineers, 1–16. https://doi.org/10.1142/9789811255267_0001

[7]     Chapter 2: Polynomial Interpolation. (2019). An Introduction to Numerical Computation, 21–54. https://doi.org/10.1142/9789811204425_0002

[8]     Chapter 3: Newton–Raphson Algorithms and Interpolation. (2017). Computational Physics, 23–29. https://doi.org/10.1142/9789813200227_0003

[9]     Chapter 6: Applications of Power Series. (2015). Foundations in Applied Nuclear Engineering Analysis, 153–169. https://doi.org/10.1142/9789814630948_0006

[10]  Chui, C. K., & Schumaker, L. L. (1995). Approximation and Interpolation. Wavelets and Multilevel Approximation (Vol. 1). Series in Approximations and Decompositions. Approximation Theory VIII, 1–606. https://doi.org/10.1142/9789814532594

[11]  DAzevedo, E. F., & Simpson, R. B. (1989). On Optimal Interpolation Triangle Incidences. SIAM Journal on Scientific and Statistical Computing, 10(6). https://doi.org/10.1137/0910064

[12]  Duan, Qi, Zhang, Yunfeng, & Twizell, E. H. (2005). A new C2 rational interpolation based on function values and constrained control of the interpolant curves. Applied Mathematics and Computation, 161(1), 311 p. https://doi.org/10.1016/j.amc.2003.12.030

[13]  Duan, Qi, Zhang, Yunfeng, & Twizell, E. H. (2005). A new weighted rational cubic interpolation and its approximation. Applied Mathematics and Computation, 168(2), 990 p. https://doi.org/10.1016/j.amc.2004.09.041

[14]  Duan, Qi, Zhang, Yunfeng, & Twizell, E. H. (2006). A bivariate rational interpolation and the properties. Applied Mathematics and Computation, 179(1), 190 p. https://doi.org/10.1016/j.amc.2005.11.094

[15]  Duan, Qi, Zhang, Yunfeng, & Twizell, E. H. (2008). Hermite interpolation by piecewise rational surface. Applied Mathematics and Computation, 198(1), 59 p. https://doi.org/10.1016/j.amc.2007.08.050

[16]  Fan Zhang, Jinjiang Li, Peiqiang Liu, & Hui Fan. (2020). Computing knots by quadratic and cubic polynomial curves. Computational Visual Media, 6(4), 417–430. https://doi.org/10.1007/s41095-020-0186-4

[17]  Faul, A. C., Goodsell, G., & Powell, M. J. D. (2005). A Krylov subspace algorithm for multiquadric interpolation in many dimensions. IMA Journal of Numerical Analysis, 25(1), 1–24. https://doi.org/10.1093/imanum/drh021

[18]  Filts, R. V. (1994). Calculation of Taylor and Fourier polynomials and their derivatives. Synopsis of lectures on the subject "Mathematical problems of electromechanics" for students. special 1801 "Electromechanics". Lviv: State University "Lviv Polytechnic", 24 p. [In Ukrainian].

[19]  Filts, R. V., & Kotsyuba, M. V. (1988). The program of natural power interpolation and differentiation of a tabular function of several independent variables. Kyiv, Deposited with RFAP. INB.NAn0223. [In Russian].

[20]  Filts, R. V., & Kotsyuba, M. V. (1989). Calculation of two-dimensional magnetic fields by the collocation method using the theory of natural interpolation. Izvestiya vuzov. Electromechanics, 3, 5–12. [In Russian].

[21]  Filts, R. V., Kotsyuba, M. V., & Grytsyuk, Yu. I. (1991). Algorithm for computing the Taylor polynomial and its derivatives on a computer. Izvestia of universities. Electromechanics, 5, 5–10. [In Russian].

[22]  Giampietro Allasia, & CesareBracco. (2011). Two interpolation operators on irregularly distributed data in inner product spaces. Journal of Computational and Applied Mathematics, 235(4), 1763 p. https://doi.org/10.1016/j.cam.2010.04.025

[23]  Goodman, T. N. T., & Meek, D. S. (2007). Planar interpolation with a pair of rational spirals. Journal of Computational and Applied Mathematics, 201(1), 112 p. https://doi.org/10.1016/j.cam.2006.02.003

[24]  Harim, N. A., & Abdul Karim, S. A. (2021). Positivity Preserving Using C2 Rational Quartic Spline Interpolation. In: Abdul Karim, S. A., Abd Shukur, M. F., Fai Kait, C., Soleimani, H., Sakidin, H. (Eds). Proceedings of the 6th International Conference on Fundamental and Applied Sciences. Springer Proceedings in Complexity. Springer, Singapore. https://doi.org/10.1007/978-981-16-4513-6_46

[25]  Hashemi, B., & Trefethen, L. N. (2017). Chebfun in three dimensions. SIAM Journal on Scientific Computing, 39, 341–363. Retrieved from: https://drive.google.com/file/d/1Iv2eukbtCIPc8R7HN1mEbzmELaD1tu9T/view. https://doi.org/10.1137/16M1083803

[26]  Hrytsiuk, Yu. I. (2014). Computational methods and models in scientific research: monograph. Lviv: LSU BZD Publishing House. 288 p. [In Ukrainian].

[27]  Hrytsiuk, Yu. I., & Havrysh, V. I. (2022). Interpolation of table-given functions by Fourier polynomial. Scientific Bulletin of UNFU, 32(4), 88–102. https://doi.org/10.36930/40320414

[28]  Hussain, Malik Zawwar, & Muhammad Sarfraz. (2008). Positivity-preserving interpolation of positive data by rational cubics. Journal of Computational and Applied Mathematics, 218(2), 446 p. https://doi.org/10.1016/j.cam.2007.05.023

[29]  Jared L. Aurentz, Anthony P. Austin, Michele Benzi, & Vassilis Kalantzis. (2019). Stable Computation of Generalized Matrix Functions via Polynomial Interpolation. SIAM Journal on Matrix Analysis and Applications, 40(1). https://doi.org/10.1137/18M1191786

[30]  Jin Xie, & Xiaoyan Liu. (2021). Adjustable Piecewise Quartic Hermite Spline Curve with Parameters. Mathematical Problems in Engineering, 2021, Article ID 2264871, 6 p. https://doi.org/10.1155/2021/2264871

[31]  Kolesnytskyi, O. K., Arsenyuk, I. R., & Mesyura, V. I. (2017). Numerical methods: tutorial. Vinnytsia: VNTU, 130 p. [In Ukrainian].

[32]  Krylyk, L. V., Bogach, I. V., & Lisovenko, A. I. (2019). Numerical Methods. Numerical integration of functions: tutorial. Vinnytsia: VNTU, 74 p. [In Ukrainian].

[33]  Krylyk, L. V., Bogach, I. V., & Prokopova, M. O. (2013). Computational mathematics. Interpolation and approximation of tabular data: tutorial. Vinnytsia: VNTU, 111 p. [In Ukrainian].

[34]  Krystyna STYš, & Tadeusz STYš. (2014). Natural and Generalized Interpolating Polynomials, 27–62 (32). https://doi.org/10.2174/9781608059423114010005

[35]  Kvetny, R. N., Dementiev, V. Yu., Mashnytskyi, M. O., & Yudin, O. O. (2009). Difference methods and splines in multidimensional interpolation problems: monograph. Vinnytsia: Universum-Vinnytsia, 92 p. [In Ukrainian].

[36]  Kvyetny, R. N., & Bogach, I. V. (2003). Interpolation of a function of two variables by the Lagrange method. Bulletin of the Vinnytsia Polytechnic Institute, 6, 365–368. [In Ukrainian].

[37]  Kvyetny, R. N., Kostrova, K. Yu., & Bogach, I. V. (2005). Interpolation by self-similar sets: monograph. Vinnytsia: Universum-Vinnytsia, 100 p. [In Ukrainian].

[38]  Malik Zawwar Hussain, & Muhammad Sarfraz. (2008). Positivity-preserving interpolation of positive data by rational cubics. Journal of Computational and Applied Mathematics, 218(2), 446–458. https://doi.org/10.1016/j.cam.2007.05.023

[39]  Mamchuk, V. I. (2015). Numerical methods: tutorial. Kyiv: National Aviation University, 388 p. [In Ukrainian].

[40]  Martin Berzins. (2000). A Data-Bounded Quadratic Interpolant on Triangles and Tetrahedra. SIAM Journal on Scientific Computing, 22(1). https://doi.org/10.1137/S1064827597317636

[41]  Mikhailets, V. A., & Murach, A. A. (2010). Hörmander spaces, interpolation and elliptic problems. With a preface by Yu. M. Berezansky. Kyiv: IM NAS of Ukraine, 370 p. [In Russian].

[42]  Min Hu, & Jieqing Tan. (2006). Adaptive osculatory rational interpolation for image processing. Journal of Computational and Applied Mathematics, 195(1-2), 46 p. https://doi.org/10.1016/j.cam.2005.07.011

[43]  Moskalets, O. F., & Shutko, V. M. (2010). The method of least squares for splines of odd powers. Bulletin of Engineering Academy of Ukraine, 2, 224. [In Ukrainian].

[44]  Nail A. Gumerov, & Ramani Duraiswami. (2007). Fast Radial Basis Function Interpolation via Preconditioned Krylov Iteration. SIAM Journal on Scientific Computing, 29(5). https://doi.org/10.1137/060662083

[45]  Nekrasov, O. N., & Mirmovich, E. G. (2010). Interpolation and approximation of data by polynomials of power, exponential and trigonometric types. Scientific and educational problems of civil protection, 4, 23–27. [In Russian].

[46]  Pahirya, M. M. (1994). Interpolation of functions by a chained fraction and a branched chained fraction of a special type. Scientific Bulletin of Uzhhorod University. Ser. Mathematical, 1, 72–79. [In Ukrainian].

[47]  Petukh, A. M., Obidnyk, D. T., & Romanyuk, O. N. (2007). Interpolation in problems of contour formation: monograph. Vinnytsia: VNTU, 104 p. [In Ukrainian].

[48]  Philip J. Rasch, & David L. Williamson. (1990). On Shape-Preserving Interpolation and Semi-Lagrangian Transport. SIAM Journal on Scientific and Statistical Computing, 11(4). https://doi.org/10.1137/0911039

[49]  Qinghua Sun, Fangxun Bao, Yunfeng Zhang, & Qi Duan. (2013). A bivariate rational interpolation based on scattered data on parallel lines. Journal of Visual Communication and Image Representation, 24(1), 75–80. https://doi.org/10.1016/j.jvcir.2012.11.003

[50]  Qiyuan Pang, Kenneth L. Ho, & Haizhao Yang. (2020). Interpolative Decomposition Butterfly Factorization. SIAM Journal on Scientific Computing, 42(2). https://doi.org/10.1137/19M1294873

[51]  Romanyuk, O. N., Romanyuk, O. V., & Velychko M. O. (2020). Analysis of circular interpolation methods. The 12 th International scientific and practical conference "Impact of Modernity on Science and Practice" (12-13 April, 2020), 572–574. Edmonton, Canada 2020.

[52]  Sarfraza, M., Hussain, & Malik Zawwar. (2006). Data visualization using rational spline interpolation. Journal of Computational and Applied Mathematics, 189(1-2), 513 p. https://doi.org/10.1016/j.cam.2005.04.039

[53]  Sergey Dolgov, Daniel Kressner, & Christoph Strössner. (2021). Functional Tucker Approximation Using Chebyshev Interpolation. SIAM Journal on Scientific Computing, 43(3). https://doi.org/10.1137/20M1356944

[54]  Sheehan Olver, & Yuan Xu. (2021). Orthogonal structure on a quadratic curve. IMA Journal of Numerical Analysis, 41(1), 206–246. https://doi.org/10.1093/imanum/draa001

[55]  Stefan Jakobsson, Bjorn Andersson, & Fredrik Edelvik. (2009). Rational radial basis function interpolation with applications to antenna design. Journal of Computational and Applied Mathematics, 233(4), 889 p. https://doi.org/10.1016/j.cam.2009.08.058

[56]  Stephen M. Robinson. (1979). Quadratic Interpolation is Risky. SIAM Journal on Numerical Analysis, 16(3). https://doi.org/10.1137/0716030

[57]  Taylor Series and Power Series. (2008). Applications and Computation Complex Analysis, 63–71. https://doi.org/10.1142/9789812811080_0011

[58]  Tsegelyk, H. G. (2004). Numerical methods: textbook for university students. Lviv National University named after Ivan Franko. Lviv, 407 p. [In Ukrainian].

[59]  Tyada, K. R., Chand, A. K. B., & Sajid, M. (2021). Shape preserving rational cubic trigonometric fractal interpolation functions. Mathematics and Computers in Simulation, 190, 866–891. https://doi.org/10.1016/j.matcom.2021.06.015

[60]  Volontyr, L. O., Zelinska, O. V., Potapova, N. A., & Chikov, I. A. (2020). Numerical methods: tutorial. Vinnytsia NAU. Vinnytsia: VNAU, 322 p. [In Ukrainian].

[61]  Winfield, D. (1973). Function Minimization by Interpolation in a Data Table. IMA Journal of Applied Mathematics, 12(3), 339–347. https://doi.org/10.1093/imamat/12.3.339

[62]  Yang Jing, & Han Xu-li. (2019). Robust Uniform B-Spline Models for Interpolating Interval Data. Journal of Graphics, 40(3), 429–434. http://www.txxb.com.cn/EN/10.11996/JG.j.2095-302X.2019030429

[63]  Yaroshenko, O. I., & Grihorkiv, M. V. (2018). Numerical methods: tutorial. Chernivtsi: Chernivtsi National University, 172 p. [In Ukrainian].

[64]  Youtian Tao, & Dongyin Wang. (2015). A bivariate rational cubic interpolating spline with biquadratic denominator. Applied Mathematics and Computation, 264(1), 366–377. https://doi.org/10.1016/j.amc.2015.04.100

[65]  Zhu, Y., & Wang, M. (2020). A class of C1 rational interpolation splines in one and two dimensions with region control. Journal of Computational and Applied Mathematics, 39, 69. https://doi.org/10.1007/s40314-020-1067-2

[66]  Zhuo Liu, Shengjun Liu & Yuanpeng Zhu. (2021). C2 Rational Interpolation Splines with Region Control and Image Interpolation Application. Journal of Mathematical Imaging and Vision, 63, 394–416. https://doi.org/10.1007/s10851-020-01005-z