Methods and means of conflict-free data exchange in the group of mobile robotic platforms

2024;
: 65-75
https://doi.org/https://doi.org/10.23939/ujit2024.01.065
Received: March 05, 2024
Accepted: April 30, 2024

Цитування за ДСТУ: Цмоць І. Г., Опотяк Ю. В., Обельовська К. М., Теслюк С. В. Методи та засоби безконфліктного обміну даними у групі мобільних робототехнічних платформ. Український журнал інформаційних технологій. 2024, т. 6, № 1. С. 65–75.
Citation APA: Tsmots I. G., Opotiak Yu. V., Obelovska K. M., & Tesliuk S. V. (2024). Methods and means of conflict-free data exchange in the group of mobile robotic platforms. Ukrainian Journal of Information Tecnology, 6(1), 65–75. https://doi.org/10.23939/ujit2024.01.065

1
Lviv Polytechnic National University, Lviv, Ukraine
2
Lviv Polytechnic National University, Lviv, Ukraine
3
Lviv Polytechnic National University, Lviv, Ukraine
4
Lviv Polytechnic National University, Lviv, Ukraine

When using groups of mobile robotic platforms (MRP), problems arise related to the management of individual platforms, the organization of cooperation in the group, and the management of the group as a whole. Management of the MRP group involves managing the actions of individual platforms to achieve the group's overall goal. To ensure the management of the MRP group in such a case, it is advisable to choose a hybrid method that requires solving the problem of conflict-free data exchange and control commands between the MRPs in the group. To solve this problem, it is proposed to improve the relevant methods and tools. The scientific novelty of the obtained research results is that a method of multi-channel conflict-free data exchange has been developed, which provides a real-time mode due to the coordination of the intensity of data arrival with the intensity of access. The method of controlling the movement of a group of mobile robotic platforms has been improved, which, by taking into account the changing parameters of the platforms and the changing state of the surrounding environment, provides effective management of the MRP group in real time. The practical significance of the research results is that it is proposed to use the CSMA/CA slotted mechanism for non-time-critical traffic to improve performance, and for time-critical traffic, coordinator-controlled access using guaranteed time slots. The hybrid method of management takes into account the advantages of centralized and distributed depending on specific tasks and conditions of use. It is proposed to use a multi-channel device for conflict-free exchange using the method of time allocation of RAM resources for data exchange in hybrid control. It is shown that global low-power networks LPWANs (Low-Power Wide Area Networks) can be used to transmit small blocks of data at a low speed when exchanging with MRP. It is proposed to use the slotted CSMA/CA mechanism for the transmission of non-time-critical traffic, and for time-critical traffic, coordinator-controlled access using guaranteed time slots. It is shown that the performance of the network during the conflict-free access period CFP depends on the results of the distribution of guaranteed GTS time slots among active users. LoRa technology was selected for long-distance data exchange between MRPs, which at the MAC (Media Access Control) sublayer allows for transmission planning and communication management between end devices and gateways, avoiding collisions and optimizing network performance.

1. L. Heitlinger, R. Stock-Homburg and F.D. Wolf, "You Got the Job! Understanding Hiring Decisions for Robots as Organizational Members," 2022 17th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Sapporo, Japan, 2022, pp. 530-540, doi: 10.1109/HRI53351.2022.9889444.

2. C. Li, J. Guo, S. Guo and Q. Fu, "Study on Collaborative Task Assignment of Sphere Multi-Robot based on Group Intelligence Algorithm," 2022 IEEE International Conference on Mechatronics and Automation (ICMA), Guilin, Guangxi, China, 2022, pp. 1159-1164, doi: 10.1109/ICMA54519.2022.9856105.

3. R. Cao, X. Ma, C. Yu and P. Xu, "Framework of Industrial Robot System Programming and Management Software," 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA), Xi'an, China, 2019, pp. 1256-1261, doi: 10.1109/ICIEA.2019.8833854.

4. M. Shelkamy, C.M. Elias, D.M. Mahfouz and O.M. Shehata, "Comparative Analysis of Various Optimization Techniques for Solving Multi-Robot Task Allocation Problem," 2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES), Giza, Egypt, 2020, pp. 538-543, doi: 10.1109/NILES50944.2020.9257967.

5. J. Dai, H. Yoshiuchi and T. Matsuda, "Multi-Robot Work Assignment Methods for Effectiveness Improvement of Deploying Service Robots," 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE), Vancouver, BC, Canada, 2019, pp. 1224-1229, doi: 10.1109/COASE.2019.8843125.

6. M. Niemeyer, S. Pütz and J. Hertzberg, "A Spatio-Temporal-Semantic Environment Representation for Autonomous Mobile Robots equipped with various Sensor Systems," 2022 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), Bedford, United Kingdom, 2022, pp. 1-6, doi: 10.1109/MFI55806.2022.9913873.

7. A. Jalil and J. Kobayashi, "Experimental Analyses of an Efficient Aggregated Robot Processing with Cache-Control for Multi-Robot System," 2020 20th International Conference on Control, Automation and Systems (ICCAS), Busan, Korea (South), 2020, pp. 1105-1109, doi: 10.23919/ICCAS50221.2020.9268225.

8. K. Stark, T. Goldschmidt, J. Doppelhamer, P. Bihani and D. Goltz, "Cloud-based integration of robot engineering data using AutomationML," 2018 IEEE 14th International Conference on Automation Science and Engineering (CASE), Munich, Germany, 2018, pp. 645-648, doi: 10.1109/COASE.2018.8560525.

9. M. Babcinschi, B. Freire, P. Neto, L.A. Ferreira, B.L. Señaris and F. Vidal, "AutomationML for Data Exchange in the Robotic Process of Metal Additive Manufacturing," 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Zaragoza, Spain, 2019, pp. 65-70, doi: 10.1109/ETFA.2019.8869079.

10. K. Narayanan, V. Honkote, D. Ghosh and S. Baldev, "Energy Efficient Communication with Lossless Data Encoding for Swarm Robot Coordination," 2019 32nd International Conference on VLSI Design and 2019 18th International Conference on Embedded Systems (VLSID), Delhi, India, 2019, pp. 525-526, doi: 10.1109/VLSID.2019.00118.

11. A. Zakhama, L. Charaabi, K. Jelassi and W. Mansour, "Software Design for Data Transfer Between an Industrial Robot and Vision System," 2018 15th International Multi-Conference on Systems, Signals & Devices (SSD), Yasmine Hammamet, Tunisia, 2018, pp. 385-389, doi: 10.1109/SSD.2018.8570661.

12. M. Vorderer, A. Verl, F. Kretschmer and T. Ringhoffer, "Platform for Information Exchange in Versatile Production Systems," 2018 25th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), Stuttgart, Germany, 2018, pp. 1-5, doi: 10.1109/M2VIP.2018.8600888.

13. M. Alsayegh, A. Dutta, P. Vanegas and L. Bobadilla, "Lightweight Multi-robot Communication Protocols for Information Synchronization," 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 2020, pp. 11831-11837, doi: 10.1109/IROS45743.2020.9341480.

14. X. Wang, İ. Mutlu, F. Rani, L. Drowatzky and L. Urbas, "A Comparative Study to Evaluate the Performance of Communication Protocols for Process Industry," 2022 32nd International Telecommunication Networks and Applications Conference (ITNAC), Wellington, New Zealand, 2022, pp. 170-177, doi: 10.1109/ITNAC55475.2022.9998327.

15. N. Koul, N. Kumar, A. Sayeed, C. Verma and M.S. Raboaca, "Data Exchange Techniques for Internet of Robotic Things: Recent Developments," in IEEE Access, vol. 10, pp. 102087-102106, 2022, doi: 10.1109/ACCESS.2022.3209376.

16. D. Aloisi and A. Cristofaro, "Consensus and formation control of unicycle-like robots with discontinuous communication protocols," 2022 European Control Conference (ECC), London, United Kingdom, 2022, pp. 1055-1060, doi: 10.23919/ECC55457.2022.9838045.

17. A.M. Vegni, V. Loscrí, C.T. Calafate and P. Manzoni, "Communication Technologies Enabling Effective UAV Networks: A Standards Perspective," in IEEE Communications Standards Magazine, vol. 5, no. 4, pp. 33-40, December 2021, doi: 10.1109/MCOMSTD.0001.2000074.

18. Cruz, S.C.D.S.; Ahmed Ouameur, M.; Figueiredo, F.A.P.D. Reinforcement Learning-based Wi-Fi Contention Window Optimization. Preprints 2022, 2022110011, doi: 10.20944/preprints 202211.0011.v1.

19. Kim, T.-W., & Hwang, G.-H. (2021). Performance Enhancement of CSMA/CA MAC Protocol Based on Reinforcement Learning. Journal of Information and Communication Convergence Engineering, 19(1), 1‑7. doi:10.6109/JICCE.2021.19.1.1

20. Khattab, T.M.S., El-Hadidi, M.T., Mourad, H-A.M.: Analysis of Wireless CSMA/CA Network Using Single Station Superposition (SSS). AEU – International Journal of Electronics and Communications, 56/2, pp. 73‑83, 2002. https://doi.org/10.1078/1434-8411-54100076

21. Mahmoud Gamal, Nayera Sadek, Mohamed R.M. Rizk, Magdy Abd ElAzim Ahmed, Optimization and modeling of modified unslotted CSMA/CA for wireless sensor networks, Alexandria Engineering Journal, vol. 59, issue 2, 2020, pp. 681-691, ISSN 1110-0168, doi:10.1016/j.aej.2020.01.035

22. F. Masud, A. Abdullah, A. Altameem, G. Abdul-Salaam, and F. Muchtar, "Traffic Class Prioritization-Based Slotted-CSMA/CA for IEEE 802.15.4 MAC in Intra-WBANs," Sensors, vol. 19, no. 3, p. 466, Jan. 2019, doi: 10.3390/s19030466.

23. Kim, S. Enabling WLAN and WPAN Coexistence via Cross-Technology Communication. Sensors 2022, 22, 707. doi:10.3390/s22030707

24. Kovtun V, Izonin I, Gregus M (2022) Modeling a session of subject-system interaction in a wireless communication infrastructure with a mixed resource. PLoS ONE 17(7), doi:10.1371/journal.pone.0271536

25. Liskevych, R. I., Liskevych, O. I., Obelovska, K. M., & Panchyshyn, R. P. (2021). Improved algorithm for the packet routing in telecommunication networks. Ukrainian Journal of Information Technology3(1), 114‑119, doi:10.23939/ujit2021.03.114

26. National Instrument, Introduction to Wireless LAN Measurements: From 802.11 a to 802.11ac. 2014. Available online: http://download.ni.com/evaluation/rf/Introduction_to_WLAN_Testing.pdf

27. Tsmots, I. G., Teslyuk, V. M., Opotiak, Yu. V., & Oliinyk, O. O. (2023). Development of the scheme and improvement of the motion control method of a group of mobile robotic platforms. Ukrainian Journal of Information Technology, 5(2), 97‑104. https://doi.org/10.23939/ujit2023.02.097

28. Best uses of wireless IoT communication technology. Available online: https://industrytoday.com/best-uses-of-wireless-iot-communication-technology/