Optimization of cyclone operating modes with intermediate dust removal using gas flow structure analysis

: 20-29
Received: January 12, 2022
Revised: March 18, 2022
Accepted: March 30, 2022
Department of Designing and Operation of Machines

The analysis of works in which designs of the dust collecting devices which are often used in the industry are investigated is carried out. It is established that forecasting the work of dust collecting devices in certain conditions is most effective to perform methods of numerical modeling and simulation of the separation process, which are widely used for research of devices of this type. Using numerical simulation methods, it is defined the structure of the gas flow in the cyclone with intermediate dust removal for different modes of operation, which was obtained by suction of gas through the dust unloading holes at constant total costs. For this cyclone, the change in the radius of the tangential, radial, and axial velocity component for different operating modes is investigated. In the course of the research, it is established that in the separation space the tangential component of velocity with increasing radius changes according to the parabolic law. The maximum values are 16–17 m/s. The suction of part of the gas in the amount of up to 20 % through the dust unloading holes slightly reduces the tangential component of the speed (up to 5 %) in the separation zone. It is determined that in the conical part the maximum values of the tangential component of the velocity decrease to 6–7 m/s. The  reduction  occurs  both  due  to  the  flow  of  gas  flow  from the descending to the ascending, and the suction of gas through the dust unloading holes. It is established that the radial component of the velocity varies from 1 m/s in the separation zone to 5.5 m/s in the conical part. It has been found that the suction of gas through dust unloading holes in the amount of more than 15% of the total volume leads to a change in the direction of the radial velocity component in the conical part. It is determined that the axial component of the velocity of  the separation  zone receives maximum  values  of  9  -  11  m/s.  In the conical part  of  the  device, it decreases to 2-4 m/s. The suction of part of the air through the dust unloading holes leads to a shift of the axis of the internal vortex relative to the geometric axis of the apparatus below the lower end of  the  exhaust pipe.It is established that  the creation of a directed  flow of gas through the dust unloading holes in the additional dust collector in the amount of up to 15% of the total gas volume contributes to a more efficient operation of the dust collector. A further increase in the amount of exhaust air leads to greater turbulence of the flow and less efficient operation of the apparatus. 

[1]  V. Ryzhov, S. Pryіomov,  A. Tymoshenko Іmprovіng the energy effіcіency of cyclone dust collectors. Eastern-European Journal of Enterprіse Technologіes. no. 1/10 (103). p. 53–62. 2020. https://doi.org/10.15587/1729-4061.2020.197083 
[2] E. Balestrin, R. K. Decker, D. Noriler, J.C.S.C. Bastos, H.F. Meier, An alternative for the collection of small particles in cyclones: Experimental analysis and CFD modeling, Separation and Purification Technology, vol. 184, p. 54–65. 2017. https://doi.org/10.1016/j.seppur.2017.04.023
[3] A. V. Lyashenyk, Ye. M. Lyutyy, L. O. Tysovsʹkyy, Yu. R.Dadak Teoriya i praktyka vykorystannya tsykloniv na derevoobrobnykh pidpryyemstvakh [Theory and practice of using cyclones in woodworking enterprises]. Naukovyy visnyk NLTU Ukrayiny [Scientific Bulletin of NLTU of Ukraine]. t. 29. no. 10. р. 97–103. 2019. [in Ukrainian]. https://doi.org/10.36930/40291020
[4] Xun Sun, Sung Kim, Seung Deok Yang, Hyun Soo Kim, Joon Yong Yoon Multi-objective optimization of a  Stairmand  cyclone  separator  using  response  surface  methodology  and  computational  fluid  dynamics,  Powder Technology, vol. 320, p. 51–65. 2017. https://doi.org/10.1016/j.powtec.2017.06.065
[5] Ali Sakin, Irfan Karagoz, Atakan Avci Performance analysis of axial and reverse flow cyclone separators, Chemical Engineering and Processing - Process Intensification, vol. 144, 2019. https://doi.org/10.1016/j.cep.2019.107630
[6]  A.  I.  Dubynin,  V.  V.  Maystruk  Tsyklon  z  promizhnym  vidvedennyam  osadzhenoho  pylu  [Cyclone with intermediate removal of precipitated dust]. Khimichna promyslovistʹ Ukrayiny [Chemical industry of Ukraine], no. 2, 40–43. 1999. [in Ukrainian]. 
[7]  H.  K  Versteeg,  W.  Malalasekera  An  introduction  to  computational  fluid  dynamics:  The  finite  volume method, (second ed), Pearson Prentice Hall. 2007. https://doi.org/10.23939/chcht09.02.175
[8] A. Artyukhov, V. Sklabіnsrіy Theoretical Analysis of Granules Movement Hydrodynamics in the Vortex  Granulators  of  Ammonium  Nitrate  and  Carbamide  Production  Chem  Chem  Technol.,  9,  175.  2015. 
[9] V. Sklabіnsrіy, O. Lіaposhchenko, A. Logvyn, M.& Al-Rammahі Hydrodynamics Modeling of Gas Separator  Inertial  and  Filter  Elements  for  Natural  Gas  Fine  Cleaning  Chem  Chem  Technol.,  8,  479,  2014. https://doi.org/10.23939/chcht08.04.479
[10] A. A. Alyamovskiy, A. A. Sobachkin, Ye. V. Odintsov, A. I. Kharitonovich, N. B. Ponomarev SolídWorks. Komp'yuternoye  modelirovaniye v  inzhenernoy praktike. [SolidWorks. Computer simulation in engineering practice] SPb.: BKHV-Peterburg. 2005. [in Russian]. 
[11] V. V. Maystruk, V.P. Dzindzyura Doslidzhennya rezhymiv roboty tsyklonu z promizhnym vidvedennyam osadzhenoho  pylu  [Investigation  of  cyclone  modes  with  intermediate  removal  of  deposited  dust]  Avtomatyzatsiya vyrobnychykh  protsesiv  u  mashynobuduvanni  ta  pryladobuduvanni  :ukrayinsʹkyy  mizhvidomchyy  naukovo-tekhnichnyy zbirnyk [Automation of production processes in mechanical engineering and manufacturing: Ukrainian interdepartmental scientific and technical collection.]. – Vyp. 55. s. 88–94. 2021. [in Ukrainian].