Causes of degradation of titanium dental implants

: 31-40
Received: September 14, 2022
Revised: September 28, 2022
Accepted: September 30, 2022
Lviv Polytechnic National University
Lviv Polytechnic National University
Lviv Polytechnic National University
Lviv Polytechnic National University

Corrosion is one of the main processes that cause problems when using metal implants in the environment of the human body. Due to its properties, titanium and its alloys are currently the most widely used biocompatible materials. But the use of implants made of titanium-based alloys is not always successful. The purpose of our research was to establish the reasons for the rejection of a Swiss firm’s dental implant made of Grade 5 titanium alloy. Implanted in the patient’s jawbone, it worked as a support for an artificial tooth. But after 1 year of operation, inflammatory processes began at the implantation site, which ultimately led to rejection of the implant. To establish the material science reasons for this, we conducted microstructural studies using an electron microscope Zeiss EVO 40XVP. The sample was metallograpically prepared by grinding, polishing, and etching by using Kroll’s Reagent. A statistical image processing program was used to estimate the quantitative ratio of the phase components of the implant alloy Image J. Elemental analysis and mapping elements were also performed to know the compositional and distribution of each element Ti, Al and V by using energy dispersive X-Ray spectroscopy coupled in SEM. The hardness value was determined using Vickers microhardness tester. The conducted studies established that the working surface of the implant suffered corrosion damage during operation. The edges of the implant are uneven with open and closed pitting. In some places, the merging of several pittings is observed, which leads to the occurrence of ulcerative corrosion. Elemental analysis established the redistribution of chemical elements in the surface layers as a result of contact with the biological environment of the human body. Unstable compounds are created on the surface, which dissolves in the human body during use. As it follows from the conducted studies, the degraded surface of the dental implant needs additional protection. 

[1] Gilbert J. L., Mali S. A., “Medical implant corrosion: Electrochemistry at metallic biomaterial surfaces. Degradation of Implant Materials”. Editor Eliaz, Noam. Springer Science + Biseness Media, 2012, 510 p. 
[2] Yatsun E. V., Chornyi V. M., Golovakha M. L., “Perspektyvy zastosuvannia biodehraduiuchykh splaviv na osnovi mahniiu v osteosyntezi (literaturno-analitychnyi ohliad)” [“Prospects for the use of biodegradable alloys based on magnesium in osteosynthesis (literature and analytical review)”], Problemy viiskovoi okhorony zdorovia [Problems of military health care], vol. 36, pp. 141–148,  2013. [In Ukrainian]. 
[3] Kamachi Mudali U., Sridhar T. M., Raj B., “Corrosion of bio implants”, in Sadhana Vol. 28, 2003, pp. 601–637, 
[4] Manam N. S., Harun W. S. W., Shri D. N. A., Ghani S. A. C., Kurniawan T., Ismail M. H., Ibrahim M. H. I. “Study of corrosion in biocompatible metals for implants: A review”, Journal of Alloys and Compounds, 701, pp. 698–715, 2017, 
[5] Gepreel MA-H., Niinomi M., “Biocompatibility of Ti-alloy for long term  implantation” J Mech Behav Biomed Mater, 20, pp. 407–15, 2013, 
[6] Elias C. N., Lima J. H. C., Valiev R. Z., Meyers M. A., “Biomedical applications of titanium and its alloys”, The Journal of The Minerals, Metals, vol. 60 (3), pp. 46–49, 2008, 
[7] Nicholson J. W., “Titanium Alloys for Dental Implants: A Review”, Prosthesis, vol.2, pp. 100–116, 2020, 
[8]  Sieniawski J. (Eds.) “Microstructure and Mechanical Properties of High Strength Two-Phase Titanium Alloys In: Titanium Alloys”, Advances in Properties Control, 2013, 
[9] Jemat А., Ghazali M. J., Razali M., Otsuka Y. “Surface Modifications and Their Effects on Titanium Dental  Implants”,  in  BioMed  Research  International,  Hindawi  Publishing  Corporation,  2015,  11  p., 
[10] Leyens C., Peters M. “Titanium and Titanium Alloys. Fundamentals and Applications”,   Wiley-Vch Verlag GmbH & Co. KGaA, Weinheim, 2003, 499 р. 
[11] Damisih I., Nyoman J., Sah J., “Characteristics Microstructure and Microhardness of Cast Ti-6Al-4V ELI for Biomedical Application Submitted to Solution Treatment”, Proceedings of the International Seminar on Metallurgy and Materials (ISMM2017) AIP Conf. Proc., 2018, pp. 020037-1 – 020037-8, 
[12] Klein G. L., “Aluminium toxicity to bone: A Multi-System effect”, Osteoporosis and Sarcopenia, issue 1, vol. 5, pp. 2–5, 2019, 
[13] Thyssen J., Jakobsen S. S., Engkilde K., Johansen J. D., Søballe K., Menné T., “The association between metal allergy, total hip  arthroplasty, and revision”, Acta Orthopaedica, vol. 80, issue 6, pp. 646–52, 2009, 
[14] Elias C. N., Fernandes D. J., De Souza F. M., Monteiro E. D. S., De Biasi R. S., “Mechanical and clinical properties of titanium and Titanium-Based alloys (Ti G2, Ti G4 cold worked nanostructured and Ti G5) for biomedical applications”, Journal of Materials Research and Technology, vol. 8, issue 1, pp. 1060–1069, 2019, 
[15] Effah E. A., Bianco P. D., Ducheyne P., “Crystal structure of the surface oxide layer on titanium and its changes arising from immersion”, Journal of Biomedical Materials Research, Vol. 29, iss. 1, рр. 73–80, 1995, 
[16] Sittig C., Textor M., Spencer N. D., Weiland M., Vallotton P.-H., “Surface characterization of implant materials cpTi, Ti-6Al-7Nb and Ti-6Al-4V with different pre-treatments”, J. Mater. Sci. Mater. Med., Vol. 10, рр. 35–46, 1999. 
[17] Xiaotian L., Chen Sh., Tsoi J. K. H., Matinlinna J. P., “Binary titanium alloys as dental implant materials—a review”, Regenerative Biomaterials, рр. 315–323, 2017, 
[18] Hench L. L., “Bioactive materials: The potential for tissue regeneration”, J. Biomat. Mater. Res., Vol. 41, No. 4, pр. 511–518, 1998,<511::AID-JBM1>3.0.CO;2-F 
[19] Yu F., Addison O., Davenport A., “A synergistic effect of albumin and H2O2 accelerates corrosion of Ti6Al4V”, Acta Biomaterialia, Vol. 26, pp. 355–365, 2015, 
[20] Blumenthal N. C., Cosma V., “Inhibition of apatite formation by titanium and vanadium ions”, J. Biomed. Mater. Res., Vol. 23, Iss. S 13, pp. 13–22, 1989, 
[21] Solovyev A. A., Ovchinnikov D. V., Korostelev E. V., Markeev A. M., “Correlation between structural and bioactive properties of titanium dioxide formed by atomic layer deposition”, Nanotechnologies, Vol. 8, Issue 5–6,  pp. 388–391, 2013, 
[22] Ban, Y. Iwaya, H. Kono, H. Sato, “Surface modification of titanium by etching in concentrated sulfuric acid,” Dental Materials, Vol. 22, No. 12, pp. 1115–1120, 2006, 
[23] Chauhan P., Koul V., Bhatnagar N., “Critical Role of Etching Parameters in the Evolution of Nano Micro  SLA  Surface  on  the  Ti6Al4V  Alloy  Dental  Implants”,  Materials,  Vol.  14,  6344,  2021, 
[24] Juodzbalys G., Sapragoniene M., Wennerberg A., “New Acid-etched Titanium Dental Implant Surface”, Stomatol. Baltic Dent. Maxillofac J., Vol. 5, pp. 101–105, 2003. 
[25] Wennerberg A., Albrektsson T., “Effects of titanium surface topography on bone integration: A systematic review”, Clin. Oral Implant. Res., Vol. 20, pp. 172–184, 2009, 
[26]  Family  R.,  Solati-Hashjin  M.,  Nik  S.  N.,  Nemati  A.,  “Surface  modification  for  titanium  implants  by hydroxyapatite nanocomposite”, Caspian journal of internal medicine, Vol. 3(3), pp. 460, 2012. 
[27] Sobieszczyk S., “Surface modifications of Ti and its alloys”, Advances In Materials Science, Vol. 10, No. 1 (23), 2010.  
[28] Tas A. C., “Formation of calcium phosphate whiskers in hydrogen peroxide (H2O2) solutions AT 90 o C”, J Americal Ceramics Society, Vol. 90, No 8, pp. 2358–2362, 2007, 
[29] Bosco R., Van Den Beucken J., Leeuwenburgh S., Jansen J., “Surface engineering for bone implants: a trend from passive to active surfaces”, Coatings, Vol. 2, pp. 95–119, 2012.  
[30] Cotell C. M., Chrisey D. B., Grabowski K. S., Sprague J. A., Gossett C. R., “Pulsed laser deposition of  hydroxylapatite  thin  films  on  Ti-6Al-4V”,  J.  Appl.  Biomater,  Vol.  3,  pp.  87–93,  1992, 
[31] Dinda G. P., Shin J., Mazumder J., “Pulsed laser deposition of hydroxyapatite thin films on Ti-6Al-4V: Effect of heat treatment on structure and properties”, Acta Biomater, Vol. 5, pp. 1821–1830, 2009, 
[32] Liu X. Y., Paul K. C., Ding C. X., “Surface Modification of Titanium, Titanium Alloys, and Related Materials  for  Biomedical  Applications”,  Materials  Science  Engineering  Report,  pp.  47–49,  2004, 
[33] Duriagina Z., Tepla T., “Effect of nitrogen ion implantation on properties of the vanadium alloys”, Laser Technologies. Lasers and their Application: Materials of International Scientific and Technical Conference, June 17–19, Truskavets, Ukraine, pp. 128–133, 2015, 
[34] Roy M., Bandyopadhyay A., Bose S., “Induction plasma sprayed nano hydroxyapatite coatings on titanium for orthopaedic and dental implants”, Surf. Coatings Technol, Vol. 205, pp. 2785–2792, 2011.  
[35] Duriagina Z. A., Tepla T. L., Kulyk V. V., Kosarevych R. Y., Vira V. V., Semeniuk O. A., “Study of structure and morphology of surface layers formed on TRIP steel by the femtosecond laser treatment”, Journal of Achievements in Materials and Manufacturing Engineering, Vol. 93 (1-2), pp. 5–19, 2019, 
[36] Rotella G., Orazi L., Alfano M., Candamano S., Gnilitskyi I., “Innovative high-speed femtosecond laser nano-patterning for improved adhesive bonding of Ti6Al4V titanium alloy”, CIRP Journal of Manufacturing Science and Technology, Vol. 18, pp. 101–106, 2017,