Improvement of methods for detecting internal defects in a high-voltage oil-filled coupling capacitor

https://doi.org/10.23939/ujmems2022.04.001
Received: August 15, 2022
Revised: August 30, 2022
Accepted: September 30, 2022
1
Odesa Polytechnic National University
2
Odesa Polytechnic National University
3
Odesa Polytechnic National University
4
Odesa Polytechnic National University

This article focuses on improving techniques for detecting internal defects in the high voltage oil-filled coupling capacitor (HVOFCC). The purpose of the article is to improve the results of technical diagnostics of HVOFCC to control its technical condition based on analyzes of samples of mineral condenser oil (MCO) from this HVOFCC. The following methods were used: gas chromatography (GCh) in determining the concentrations of the components Н2, CН4, С2Н4 , С2Н6 , С2Н2 , СО, СО2 , Н2О in the volume of the operational MCO; determining the dependence solubility of air and H2  in MCO on temperature; diagnosing HVOFCC using the Rogers method; descriptions when clarifying the mechanisms of processes occurring in HVOFCC based on the results of diagnosis after its opening. The concentrations of components (Н2, CН4, С2Н4, С2Н6, С2Н2, СО, СО2 , Н2О) in MCO samples from HVOFCC type CMP-166/√3-0.014 were determined. The dependences of the solubility of air and H2 in MCO on temperature (in the temperature range of 255...373 K), as well as the solubility of gases Н2, CН4, С2Н4, С2Н6, С2Н2, СО, СО2 in this MCO at a temperature of 20°C were found using the GCh method. Calculated concentrations of gases Н2, CН4, С2Н4, С2Н6, С2Н2, СО, СО2 in the air above the MCO surface in a sealed HVOFCC with internal defects. The Rogers method was used to diagnose HVOFCC based on the results of analysis of MCO samples by the GCh method. It is shown that the emergence and development of the internal defect “Flashover without Power Follow Through” in HVOFCC is facilitated by defects that have arisen during its manufacture and operation, namely, degradation of the MCO; destruction of the membrane boxes of the expander, penetration of MCO into it, penetration of air from the expander into the volume of MCO; the emergence and accumulation of combustible fire hazardous gases Н2, CН4, С2Н4, С2Н6, С2Н2, СО in the air volume above the MCO surface. The results obtained  make it possible to increase the reliability of the results of diagnosing the technical condition of HVOFCC with cellulose solid electrical insulation based on the results of GCh analyzes of MCO samples during life tests or before repair. When conducting further research (after opening the HVOFCC during life tests or before its repair), MCO should be  sampled to determine its physicochemical, thermophysical and electrophysical properties and the contents of diagnostic components in it (Н2; CН4; С2Н4; С2Н6; С2Н2; СО; СО2; H2S; Н2О; antioxidant additives; furan compounds). 

[1] Labzun M. P., et al., “Parametricheskie otkazy kondensatorov SMA-166V3-14 v Jugo-Zapadnoj Jelektrojenergosisteme Ukrainy” [“Parametric failures of SMA-166V3-14 capacitors in the South-Western Power System of Ukraine”], Visnyk Natsionalnoho tekhnichnoho universytetu “Kharkivskyi tekhnichnyi universytet” [Bulletin of the National Technical University “Kharkov Polytechnic Institute”], vol. 21 (1064), pp. 88–96, 2014. [in Russian]. 
[2] Gnonhoue O. G., et al., “Review of Technologies and Materials Used in High-Voltage Film Capacitors”, Polymers, vol. 13 (766), рр. 1–18, 2021, https://doi.org/10.3390/polym13050766 
[3] Kondensatory v farforovyh korpusah dlja emkostnoj svjazi, otbora moshhnosti i delitelej naprjazhenija. Tehnicheskoe opisanie i instrukcija po jekspluatacii: ODA. 463.065-71 [Capacitors in porcelain cases for capacitive coupling, power take-off and voltage dividers. Technical description and instruction manual: ODA. 463.065-71], Ust'-Kamenogorsk, Russia: TOO “UKKZ”, 1980. [in Russian]. 
[4] Normi viprobuvannja elektroobladnannja: SOU-N EE 20.302:2007 [Norms of electrical equipment testing: SOU-N EE 20.302:2007], Kyiv, Ukraine: OEP “GRІFRE”, 2007. [in Ukrainian]. 
[5] Labzun M. P., et al., “Prichini pogіrshennja іzoljacії kondensatorіv zv’jazku 330 kV, jakі ne vіdpracjuvali pasportnij resurs, ta їh dіagnostichnі parametri” [“The reasons for the deterioration of the insulation of the 330 kV communication  capacitors, which have not worked out the passport resource, and their diagnostic parameters”], Jelektricheskie seti i sistemy, vol. 1, pp. 61–67, 2014. [in Ukrainian].  
[6] Coupling capacitors and capacitor dividers – Part 1: General rules, IEC publication 60358-1:2012-06, Geneva, Switzerland, 2012. 
[7] Dar'jan L. A., “Issledovanie processa obrazovanija gazoobraznyh produktov razlozhenija izoljacii v vysokovol'tnyh impul'snyh kondensatorah pri provedenii resursnyh ispytanij”  [“Investigation of the process of formation of gaseous products of insulation decomposition in high-voltage pulse capacitors during life tests”], Jelektrotehnika, [Electrical engineering], vol. 9, pp. 30–36, 2000. [in Russian]. 
[8] Arakeljan V. G., “Hromatograficheskij metod diagnostiki vysokovol'tnyh impul'snyh kondensatorov pri ih proizvodstve” [“Chromatographic method for diagnosing high-voltage pulse capacitors during their production”], Jelektrichestvo [Electricity], vol. 5, pp. 54–57, 1992. [in Russian]. 
[9] Guide for the sampling of gases and of oil from oil-filled electrical equipment and the analysis of free and dissolved gases, IEC publication 60567:1992-07, Geneva, Switzerland, 2005. 
[10] Grabko V. V. and Bocula M. P., Metodi ta іnformacіjno-vimіrjuval'nі sistemi dlja tehnіchnoї dіagnostiki silovih kosinusnih kondensatorіv [Methods and information and simulation systems for technical diagnostics of power cosine capacitors], Vіnnicja: UNІVERSUM, 2003. [in Ukrainian]. 
[11] Jelektrotehnicheskij spravochnik: v 3-h tomah. T. 2. Jelektrotehnicheskie ustrojstva [Electrotechnical reference book: in 3 volumes, vol. 2. Electrical devices], Moscow, Russia: Jenergoizdat, 1981. [in Russian]. 
[12] Dar'jan L. A. and Zajcev K. A., “Kazhushhiesja zarjady chastichnyh razrjadov v sekcionirovannyh kondensatorah” [“Apparent charges of partial discharges in sectioned capacitors”], Sbornik nauchnyh trudov VEI [Collection of scientific papers VEI], pp. 107–113, 1989. [in Russian]. 
[13] Arakeljan V. G., et al., “Razlozhenie izoljacionnyh zhidkostej pod dejstviem chastichnyh razrjadov, tepla i ul'trazvukovogo polja” [“Decomposition of insulating liquids under the action of partial discharges, heat and ultrasonic fields”], Jelektrichestvo [Electricity], vol. 5, pp. 33–36, 1988. [in Russian]. 
[14] Leblanc Y., et al., “Static headspace gas chromatographic determination of fault gases dissolved in transformer  insulating  oils”,  Journal  of  Chromatography,  vol.  633,  issue  1–2,  pp.  185–193,  1993, 
https://doi.org/10.1016/0021-9673(93)83153-J 
[15] Torkos K., et al., “Determination of fault gases in transformers oils”, Journal of Chromatography, vol. 286, pp. 317–321, 1984, https://doi.org/10.1016/S0021-9673(01)99201-5 
[16] Ferreto S. J., “A comparative study of dissolved gas analysis techniques: the vacuum extraction method versus  the  direct  inectijn  method”,  IEEE  Transaction on Power Delivery, vol. 5, issue 1, pp. 20–25, 1990, https://doi.org/10.1109/61.107324 
[17] Pіdgotovka ta provedennja hromatografіchnogo analіzu vіl'nih gazіv, vіdіbranih іz gazovogo rele, і gazіv, rozchinenih u іzoljacіjnomu maslі maslonapovnenogo elektroobladnannja. Metodichnі vkazіvki: SOU-N EE 46.302:2006 [Preparation and chromatographic analysis of free gases taken from the gas relay and gases dissolved in insulating oil of oil-filled electrical equipment. Methodological guidelines: SOU-N EE 46.302:2006], Kyiv, Ukraine: OEP “GRІFRE”, 70 p., 2007. [in Ukrainian]. 
[18] Xiang Chenmeng, et al., “Comparison of Dissolved Gases in Mineral and Vegetable Insulating Oils under Typical Electrical and Thermal Faults”, Energies, vol 9, рр.1 Moscow, Russia:22, 2016, https://doi.org/10.3390/en9050312 
[19] Dіagnostika  maslonapovnenogo  transformatornogo  obladnannja  za  rezul'tatami  hromatografіchnogo analіzu vіl'nih gazіv, vіdіbranih іz gazovogo rele, і gazіv, rozchinenih u іzoljacіjnomu maslі. Metodichnі vkazіvki: SOU-N EE 46.501:2006 [ Diagnostics of oil-filled transformer equipment based on the results of chromatographic analysis of free gases taken from the gas relay and gases dissolved in insulating oil. Methodological guidelines: SOU-N EE 46.501:2006], Kyiv, Ukraine: OEP “GRІFRE”, 2007. [in Ukrainian].  
[20] R. R. Rogers, “IEEE and IEC Codes  to Interpret Incipient faults in Transformers, Using Gas in Oil Analysis”, IEEE Trans. on Electrical Insulation, vol. 13. № 5, pp. 349–354, 1978, https://doi.org/10.1109/TEI.1978.298141 
[21] Shutenko O., Kulyk О. and Ponomarenko S., Comparative analysis of existing standards and methodologies for  interpreting  DGA  results:  study  guide  for  individual  computational  and  graphical  tasks, Kharkiv, Ukraine: Typography Madrid, 2021.  
[22]  Abramov V.  B.,  Brzhezic'kij  V. O. and Procenko O. R.,  Prijmal'nі ta ekspluatacіjnі viprobuvannja elektroustatkuvannja [Acceptance and operational tests of electrical equipment], Kyiv, Ukraine: NTUU “KPІ”. – 2015. [in Ukrainian]. 
[23] Gobrej R. M., Rubanenko O. Е. and Grimud G. І. Tehnіchne dіagnostuvannja, viprobuvannja ta vimіrjuvannja elektroobladnannja v umovah montazhu, nalagodzhuvannja і v ekspluatacії. Chastina 1 [Technical diagnostics, testing and measurement of electrical equipment in conditions of installation, adjustment and operation. Part 1], Kyiv, Ukraine: “NTUKC AsElEnergo”, 2008. [in Ukrainian]. 
[24] Tehnicheskoe diagnostirovanie jelektrooborudovanija i kontaktnyh soedinenij jelektroustanovok i vozdushnyh linij jelektroperedachi sredstvami infrakrasnoj tehniki. Metodicheskie ukazanija: SOU N EE 20.577:2007 [Technical diagnosis of electrical equipment and contact connections of electrical installations and overhead power lines using infrared technology. Methodical instructions: SOU N EE 20.577:2007], Kyiv, Ukraine: GP NJeK “Ukrjenergo”, 2007. [in Russian]. 
[25] Zajcev S. V.,  Kishnevskij V. A.  and Savich S. L., “Razrabotka metodov gazohromatograficheskih opredelenij soderzhanij rastvorennyh komponentov v jenergeticheskih maslah” [“Development of gas chromatography methods for determining the content of dissolved components in energy oils”], Vostochno-Evropejskij  zhurnal peredovyh tehnologij  [Eastern European journal of advanced technologies], vol. 6/6 (72),  pp.  34–42,  2014.  [in Russian], https://doi.org/10.15587/1729-4061.2014.29389 
[26] Hachenberg H. and Schmidt A. P., Gas Cromatographic Head space Analysis, New York. Rheine, Heyden, 1977.  
[27] Zajcev S. V. and Kishnevskij  V.  A., “Gazohromatograficheskie metody opredelenija soderzhanij rastvorennyh v transformatornyh maslah komponentov” [“Gas chromatographic methods for determining components dissolved in transformer oils”], Pracі Odes'kogo polіtehnіchnogo unіversitetu [Proceedings of the Odessa Polytechnic University], vol. 2 (41), pp. 132–135, 2013. [in Russian]. 
[28] Vitenberg A. G. and Ioffe B. V., Gazovaja jekstrakcija v hromatograficheskom analize. Parofaznyj analiz i rodstvennye metody [Gas extraction in chromatographic analysis. Vapor phase analysis and related methods], Leningrad, Russia: Himija, 1982. [in Russian]. 
[29] Metodicheskie ukazanija po opredeleniju soderzhanija vody i vozduha v transformatornom masle: RD 34.43.107-95  [Guidelines for determining the content of water and air in transformer oil: RD  34.43.107-95], Moscow, Russia: RAO EJeS Rossii, 1996. [in Russian]. 
[30] Zajcev S. V., Kishnevskij V. A. and Shulyak I. D., “Razrabotka gazohromatograficheskogo metoda opredeleniya v energeticheskih maslah ionola i vody metodom dobavok” [Development of a gas chromatographic method for the determination of ionol and water in energy oils by the method of additives”], Vostochno-Evropejskij zhurnal peredovyh tehnologij [Eastern European journal of advanced technologies], vol. 2/6 (74), pp. 21–28, 2015. [in Russian], https://doi.org/10.15587/1729-4061.2015.40896 
[31] Shpiganovich A. N., Mamontov A. N. and Bojchevskij A. V., “Teplovizionnyj kontrol' kondensatorov i vysokochastotnyh zagraditelej”, [“Thermal imaging control of capacitors and high-frequency barriers”], Vestnik TGTU,[  Bulletin  of  TSTU],  vol.  26,  issue  4,  pp.  555–563,  2020.  [in  Russian], https://doi.org/10.17277/vestnik.2020.04.pp.555-563 
[32] Gobrej R. M., Chernov V. F. and Udod E. І., Dіagnostuvannja elektroustanovok 0,4–750 kV zasobami іnfrachervonoї  tehnіki.  Uchbovo-metodichnij  posіbnik  [Diagnostics  of  electrical  installations  0.4–750 kV using infrared technology. Educational and methodological guide], Kyiv, Ukraine: DP “NTUKC AsElEnergo”, 2007. [in Ukrainian]. 
[33] Christian J. R. Coronado, et al., “Flammability limits: A review with emphasis on ethanol for aeronautical applications and description of the experimental procedure”, Journal of Hazardous Materials, vol. 241–242, pp. 32–54, 2012, https://doi.org/10.1016/j.jhazmat.2012.09.035 
[34]  Lipshtejn  R.  A.  and  Shahnovich  M.  I.,  Transformatornoe  maslo  [Transformer  oil],  Moscow,  Russia: Jenergoatomizdat, 1983. [in Russian]. 
[35] Manevich  L. O., Obrabotka transformatornogo masla [Transformer oil processing], Moscow, Russia: Jenergija,1975. [in Russian]. 
[36] Zajcev S. V., et al., Sovremennye metody kontrolja jenergeticheskih masel i produktov ih degradacii dlja obespechenija nadezhnosti jekspluatacii maslonapolnennogo jelektrooborudovanija jelektricheskih stancij i setej: monografija [Modern methods for monitoring energy oils and their degradation products to ensure the reliability of operation of oil-filled electrical equipment of power plants and networks: monograph], Odessa, Ukraine: Jekologija, 2019. [in Russian]. 
[37] Paul C. Hiemenz and Raj Rajagopalan, Рrinciples of colloid and surface chemistry, CRC Press, 1997. 
[38]  Dіagnostika  maslonapovnenogo  transformatornogo  obladnannja  za  rezul'tatami  hromatografіchnogo analіzu vіl'nih gazіv, vіdіbranih іz gazovogo rele, і gazіv, rozchinenih u іzoljacіjnomu maslі. Metodichnі vkazіvki: SOU-N  EE  46.501:2006  [Diagnosis  of  oil-filled  transformer  control  according  to  the  results  of  chromatographic analysis of free gases, selected from a gas relay, and gases, related to insulating oil. Methodological instructions: SOU-N EE 46.501:2006], Kyiv, Ukraine: OEP “GRІFRE”, 2007. [in Ukrainian].  
[39] IEEE Guide for the Interpretation of Gases Generated in Oil-Immersed Transformers, IEЕЕ publication Std C57.104™-2008 (Revision of IEEE Std C57.104-1991), Geneva, Switzerland, 2008.  
[40]  Aleksandrov  G.  N.,  et  al.,  Tehnika  vysokih  naprjazhenij  [High  voltage  technology],  Moscow,  Russia: Vysshaja shkola, 1973. [in Russian]. 
[41]  Gumenjuk  O.  І.,  et  al.,  Tehnologіja  remontu  і  ekspluatacії  visokovol'tnih  uvodіv  ta  їh  konstruktivnі osoblivostі. Dovіdkovo metodichnij posіbnik [Technology of repair and operation of high-voltage inputs and their design  features.  Methodical  guide  for  reference],  Kyiv,  Ukraine:  DP  “Naukovo-tehnіchnij  uchbovo-konsul'tativnij centr”, 2012. [in Ukrainian]. 
[42]  Nikolaev M. Ju., et al.,  Jelektrotehnicheskie  i  konstrukcionnye  materialy  [Electrical  and  construction materials], Nizhnevartovsk, Russia: NVGU, 2022. [in Russian]. 
[43] Shherbachenko L. A., Fizika dijelektrikov. Metodicheskoe posobie [Physics of dielectrics. Toolkit], Irkutsk, Russia: IGU, 2005. [in Russian]. 
[44] Ahadov Ja. Ju., Dijelektricheskie svojstva chistyh zhidkostej: Spravochnik [Dielectric Properties of Pure Liquids: A Handbook], Moscow, Russia: Izdatel'stvo standartov, 1972. [in Russian]. 
[45] Jem A. A., “Matematicheskaja model' rasprostranenija jelektromagnitnyh voln na granice razdela «led – voda»” [“Mathematical Model of Electromagnetic Wave Propagation at the Ice-Water Interface”], Young Scientist,  vol. 1 (291), pp. 42–45, 2020. [in Russian].  
[46] Puchkov N. G.,  et  al., Tovarnye nefteprodukty, ih svojstva i primenenie. Spravochnik [Commercial petroleum products, their properties and applications. Directory], Moscow, Russia: izdatel'stvo “Himija”, 1971. [in Russian]. 
[47] Ahriev A. S., et al., “Zavisimost' dijelektricheskoj pronicaemosti i udel'nogo ob#emnogo soprotivlenija polimernyh kompozitov ot koncentracii nanorazmernyh chastic napolnitelej aljuminija i sazhi” [“Dependence of the Dielectric Constant and Volume Resistivity of Polymer Composites on the Concentration of Nanosized Particles of Aluminum  Fillers  and  Carbon  Black”],  Vestnik  Dagestanskogo gosudarstvennogo  tehnicheskogo  universiteta. Tehnicheskie nauki [Bulletin of the Dagestan State Technical University. Technical science], vol. 44, issue 2, pp. 18–27, 2017. [in Russian]. https://doi.org/10.21822/2073-6185-2017-44-2-18-27 
[48] Petrosjan V.  A. and  Feoktistov L. G., Organicheskaja  jelektrohimija: V dvuh knigah: Kn. 1 [Organic electrochemistry: In two books: Book. One], Moscow, Russia: Himija, 1988. [in Russian]. 
[49] Slavinskij A. Z, Kontrol' jelektrotehnicheskogo oborudovanija v jekspluatacii i pri remontah [Control of electrical equipment in operation and during repairs], Moscow, Russia: Nauchtehlitizdat, 1999. [in Russian].