APPLICABILITY ASSESSMENT OF THE VICKERS INDENTATION FOR DETERMINING THE FRACTURE TOUGHNESS OF YTTRIA-STABILIZED ZIRCONIA

2023;
: 48-59
https://doi.org/10.23939/ujmems2023.03.048
Received: August 10, 2023
Revised: September 26, 2023
Accepted: September 28, 2023
1
Department of Materials Science and Engineering,
2
Krakow Institute of Technology
3
Lviv Polytechnic National University
4
Lviv Polytechnic National University
5
Krakow Institute of Technology

Crack growth resistance of ZrO2-(3-8) mol% Y2O3 ceramics was investigated. Young's modulus by the ultrasonic flaw detection method were determined. Vickers hardness and parameters of cracks after Vickers indentation were obtained. Based on the Young's modulus values, Vickers hardness, and parameters of cracks, the fracture toughness of the investigated ceramics was calculated using 9 different equations of the Vickers indentation method.

A comparative analysis of the calculated fracture toughness values with those obtained by the single-edge notch beam method was carried out. It was found that choosing the optimal equation for calculating fracture toughness by the Vickers indentation method is quite difficult and requires comparison with the results of standardized tests. It was shown that to determine crack resistance characteristics of the yttria-stabilized zirconia ceramics, the use of only the Vickers indentation method without comparison with other methods of fracture mechanics is incorrect.

[1] A.-R. Alao, et al., "Surface quality of yttria-stabilized tetragonal zirconia polycrystal in CAD/CAM milling, sintering, polishing and sandblasting processes", J. Mech. Behav. Biomed. Mater., vol. 65, pp.102-116, 2017. doi:10.1016/j.jmbbm.2016.08.021.
https://doi.org/10.1016/j.jmbbm.2016.08.021
[2] E. E. Daou, "The zirconia ceramic: strengths and weaknesses", Open Dent. J., vol. 8, pp. 33-42, 2014. doi:10.2174/1874210601408010033.
https://doi.org/10.2174/1874210601408010033
[3] C. Gautam, et al., "Zirconia based dental ceramics: structure, mechanical properties, biocompatibility and applications", Dalton Trans., vol. 45, pp. 19194-19215, 2016. doi:10.1039/C6DT03484E.
https://doi.org/10.1039/C6DT03484E
[4] Y. Zhu, et al., "3D printed zirconia ceramic hip joint with precise structure and broad-spectrum antibacterial properties", Int. J. Nanomedicine, vol. 14, pp. 5977-5987, 2019. doi:10.2147/IJN.S202457.
https://doi.org/10.2147/IJN.S202457
[5] A. Okada, "Automotive and industrial applications of structural ceramics in Japan", J. Eur. Ceram. Soc., vol. 28, pp. 1097-1104, 2008. doi:10.1016/j.jeurceramsoc.2007.09.016.
https://doi.org/10.1016/j.jeurceramsoc.2007.09.016
[6] G. Pezzotti, "Bioceramics for hip joints: the physical chemistry viewpoint", Materials, vol. 7, pp. 4367-4410, 2014. doi:10.3390/ma7064367.
https://doi.org/10.3390/ma7064367
[7] T. Liu, et al., "Characterization of YSZ ceramic nanopowders synthesized at different temperatures via polyacrylamide gel method", J. Wuhan Univ. Technol.-Mater Sci Ed., vol. 35, pp. 528-534, 2020. doi:10.1007/s11595-020-2289-2.
https://doi.org/10.1007/s11595-020-2289-2
[8] D. Ćorić, et al., "Vickers indentation fracture toughness of Y-TZP dental ceramics", Int. J. Refract. Met. Hard Mater., vol. 64, pp. 14-19, 2017. doi:10.1016/j.ijrmhm.2016.12.016.
https://doi.org/10.1016/j.ijrmhm.2016.12.016
[9] I. Žmak, et al., "Hardness and indentation fracture toughness of slip cast alumina and alumina-zirconia ceramics", Materials, vol. 13, pp. 122, 2019. doi:10.3390/ma13010122.
https://doi.org/10.3390/ma13010122
[10] A. A.Madfa, et al., "Use of zirconia in dentistry: an overview", Open Biomater. J., vol. 5, pp. 1-9, 2014. doi:10.2174/1876502501405010001.
https://doi.org/10.2174/1876502501405010001
[11] J. Chevalier, et al., "The tetragonal-monoclinic transformation in zirconia: lessons learned and future trends", J. Am. Ceram. Soc., vol. 92, pp. 1901-1920, 2009. doi:10.1111/j.1551-2916.2009.03278.x.
https://doi.org/10.1111/j.1551-2916.2009.03278.x
[12] C. Piconi, and S. Sprio, "Zirconia implants: is there a future?", Curr. Oral Health Rep.,vol. 5, pp. 186-193, 2018. doi:10.1007/s40496-018-0187-x.
https://doi.org/10.1007/s40496-018-0187-x
[13] C. Piconi, and A.A. Porporati, "Bioinert ceramics: zirconia and alumina", in Handbook of Bioceramics and Biocomposites; I. V. Antoniac, Ed. Springer International Publishing: Cham, pp. 1-25, 2015, ISBN 978-3-319-09230-0.
https://doi.org/10.1007/978-3-319-09230-0_4-1
[14] I. Denry, and J. Kelly, "State of the art of zirconia for dental applications", Dent. Mater.,vol. 24, pp. 299-307, 2008. doi:10.1016/j.dental.2007.05.007.
https://doi.org/10.1016/j.dental.2007.05.007
[15] A. Moradkhani, et al. "Determination of fracture toughness using the area of micro-crack tracks left in brittle materials by vickers indentation test", J. Adv. Ceram.,vol. 2, pp. 87-102, 2013. doi:10.1007/s40145-013-0047-z.
https://doi.org/10.1007/s40145-013-0047-z
[16] Q. Yao, et al. "Evaluations on ceramic fracture toughness measurement by edge chipping", Coatings, vol., pp. 1146, 2022. doi:10.3390/coatings12081146.
https://doi.org/10.3390/coatings12081146
[17] B. Roebuck, et al. "Palmqvist toughness for hard and brittle materials" in Measurement good practice guide. No. 9, 2008.
[18] T. G. T. Nindhia, and T. Lube, "Single edge precrack v-notched beam (SEPVNB) fracture toughness testing on silicon nitride", Mater. Sci. Forum, vol. 962, pp. 205-209, 2019. doi:10.4028/www.scientific.net/MSF.962.205.
https://doi.org/10.4028/www.scientific.net/MSF.962.205
[19] H. Miyazaki, et al. "Comparison of fracture resistance as measured by the indentation fracture method and fracture toughness determined by the single-edge-precracked beam technique using silicon nitrides with different microstructures", J. Eur. Ceram. Soc., vol. 27, pp. 2347-2354, 2007. doi:10.1016/j.jeurceramsoc.2006.09.002.
https://doi.org/10.1016/j.jeurceramsoc.2006.09.002
[20] S. Begand, et al. "Fracture toughness of 3Y-TZP ceramic measured by the chevron-notch beam method: a round-robin study", Dent. Mater., vol. 38, pp. 1128-1139, 2022. doi:10.1016/j.dental.2022.05.001.
https://doi.org/10.1016/j.dental.2022.05.001
[21] J. J. Kruzic, et al. "Indentation techniques for evaluating the fracture toughness of biomaterials and hard tissues", J. Mech. Behav. Biomed. Mater., vol. 2, pp. 384-395, 2009. doi:10.1016/j.jmbbm.2008.10.008.
https://doi.org/10.1016/j.jmbbm.2008.10.008
[22] B. R. Lawn, and M. V. Swain, "Microfracture beneath point indentations in brittle solids", J. Mater. Sci., vol. 10, pp. 113-122, 1975. doi:10.1007/BF00541038.
https://doi.org/10.1007/BF00541038
[23] B. R. Lawn, and E. R. Fuller, "Equilibrium penny-like cracks in indentation fracture", J. Mater. Sci., vol. 10, pp. 2016-2024, 1975. doi:10.1007/BF00557479.
https://doi.org/10.1007/BF00557479
[24] A. G. Evans,.and E. A. Charles, "Fracture toughness determinations by indentation", J. Am. Ceram. Soc., vol. 59, pp. 371-372, 1976. doi:10.1111/j.1151-2916.1976.tb10991.x.
https://doi.org/10.1111/j.1151-2916.1976.tb10991.x
[25] K. Tanaka, "Elastic/plastic indentation hardness and indentation fracture toughness: the inclusion core model", J. Mater. Sci., vol. 22, pp. 1501-1508, 1987. doi:10.1007/BF01233154.
https://doi.org/10.1007/BF01233154
[26] K. Niihara, et al. "Evaluation of KIc of brittle solids by the indentation method with low crack-to-indent ratios", J. Mater. Sci. Lett., vol. 1, pp. 13-16, 1982. doi:10.1007/BF00724706.
https://doi.org/10.1007/BF00724706
[27] K. Niihara, "A fracture mechanics analysis of indentation-induced Palmqvist crack in ceramics", J. Mater. Sci. Lett., vol. 2, pp. 221-223, 1983. doi:10.1007/BF00725625.
https://doi.org/10.1007/BF00725625
[28] G. R. Anstis, et al. "A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements", J. Am. Ceram. Soc., vol. 64, pp. 533-538, 1981. doi:10.1111/j.1151-2916.1981.tb10320.x.
https://doi.org/10.1111/j.1151-2916.1981.tb10320.x
[29] B. R. Lawn, et al. "Elastic/plastic indentation damage in ceramics: the median/radial crack system", J. Am. Ceram. Soc., vol. 63, pp. 574-581, 1980. doi:10.1111/j.1151-2916.1980.tb10768.x.
https://doi.org/10.1111/j.1151-2916.1980.tb10768.x
[30] J. E. Blendell, The Origins of Internal Stresses in Polycrystalline Alumina and Their Effects on Mechanical Properties, Cambridge, 1979.
[31] J. Lankford, "Indentation Microfracture in the Palmqvist Crack Regime: Implications for Fracture Toughness Evaluation by the Indentation Method", J. Mater. Sci. Lett., vol. 1, pp. 493-495, 1982. doi:10.1007/BF00721938.
https://doi.org/10.1007/BF00721938
[32] V. V. Kulyk, et al. "Effects of yttria content and sintering temperature on the microstructure and tendency to brittle fracture of yttria-stabilized zirconia", Arch. Mater. Sci. Eng., vol. 2, pp. 65-79, 2021. doi:10.5604/01.3001.0015.2625.
https://doi.org/10.5604/01.3001.0015.2625
[33] V. Kulyk, et al. "The effect of sintering temperature on the phase composition, microstructure, and mechanical properties of yttria-stabilized zirconia", Materials, vol. 15, pp. 2707, 2022. doi:10.3390/ma15082707.
https://doi.org/10.3390/ma15082707
[34] P. Klimczyk, et al. "Phase stability and mechanical properties of Al2O3-CBN composites prepared via spark plasma sintering", Diam. Relat. Mater., vol. 104, pp.107762, 2020. doi:10.1016/j.diamond.2020.107762.
https://doi.org/10.1016/j.diamond.2020.107762