damping

Dynamic Properties Predictions for Laminated Plates by High Order Theories

The main aim of this study is to predict the elastic and damping properties of composite laminated plates. Some approximate methods for the stress state predictions for laminated plates are presented. For simple uniform bending and transverse loading conditions, this problem has an exact elasticity solution. This paper presents a new stress analysis method for the accurate determination of the detailed stress distributions in laminated plates subjected to cylindrical bending.

Sound Transmission Properties of Composite Layered Structures in the Lower Frequency Range

This study aims to predict the sound transmission properties of composite layered plates structures in the lower frequency range. In present paper a novel procedure to derive the sound isolation parameters for layered plates is under discussion. This paper presents a new stress analysis method for the accurate determination of the detailed stress distributions in laminated plates subjected to cylindrical bending. Some approximate methods for the stress state predictions for laminated plates are presented here.

The hydro-automatic damping system against dynamic vibrations

A review and analysis of the developed hydraulic system for quenching dynamic oscillations has been carried out. A mathematical model for determining the operation delay time of the hydraulic system of the dynamic quenching of oscillations has been created. A period’s calculation of cleavage of the soil and the operation delay time of quencher dynamic oscillations from which it is possible in theory to establish the ability of the hydraulic system of dynamic quenching of oscillations to operate in due time is performed.

Determining the frequency characteristics of the elastic element dynamic quencher fluctuations.

The paper deals with the application of a new method of stress state analysis for the specified influence of the layered beams with masses on their dynamic characteristics. The proposed theoretical model takes into account layer deformation considering a transversal displased deformation, general deformation and strain. Numerical examples are under discussion: the frequency spectrum and damping dependence from the anisotropy of mechanical properties of layer beams. The results are used for optimal design of dynamic quencher fluctuations.