довга короткочасна пам’ять

The impact of activation functions on LTSM server load prediction accuracy: machine learning approach

The continuously growing number of users and their requests to the server demands substantial resources to ensure fast responses without delays.  However, server load is inherently unevenly distributed throughout the day, week, or month.  Accurately predicting the required resources and dynamically managing their allocation is crucial, as it can lead to significant cost savings in server maintenance without compromising the user experience.  This study investigates the influence of activation function choice on the forecasting accuracy of Long Short-Term Memory (LSTM) n

Структура інформаційної системи передбачення та інтерпретації зміни стану користувача сервісу

В роботі досліджено проблему передбачення зміни станів користувачів (зокрема відтоку) на основі сесійних даних із використанням глибинних нейронних мереж. Було розглянуто застосування моделей довгої короткочасної пам’яті та згорткових нейронних мереж, а також використання кодування пар байтів для попереднього опрацювання даних. Проведено аналіз функціоналу розробленої інформаційної системи для прогнозування зміни стану користувачів та інтерпретації моделей прогнозування, яка поєднує методи аналізу даних, побудови прогнозних моделей та пояснення отриманих результатів.