косинусна подібність

Інтелектуальний аналіз текстових даних у соціальних мережах із використанням BERT і XGBoost

У цій статті представлено комплексний підхід до аналізу настроїв у соціальних мережах із застосуванням сучасних методів опрацювання тексту та алгоритмів машинного навчання. Основний фокус — інтеграція моделі Sentence-BERT для векторизації тексту та XGBoost для класифікації настроїв. Використовуючи набір даних Sentiment140, було проведено широке дослідження текстових повідомлень, позначених анотаціями настроїв. Модель Sentence-BERT дозволяє генерувати високоякісні векторні представлення текстових даних, зберігаючи як лексичні, так і контекстуальні зв’язки між словами.

Порівняння та кластеризація джерел текстової інформації на основі алгоритму косинусної подібності

У цій статті представлено дослідження, спрямоване на розроблення оптимальної концепції аналізу та порівняння джерел інформації на основі великих обсягів текстової інформації з використанням методів опрацювання природної мови. Об’єктом дослідження стали канали новин Telegram, які використовуються як джерела текстових даних. Була проведене попереднє опрацювання текстів, включаючи очищення, токенізацію та лематизацію, щоб сформувати глобальний словник, що складається з унікальних слів з усіх джерел інформації.