linearization

Pipeline pressure distribution finding methods

The method of solving problems of mathematical physics, in particular for calculating a non-stationary gas flow in pipelines, is proposed in this article on the basis of the biorthogonal polynomial constructed by the authors. The method of solving the problem by means of the separation of variables in the base of biorthogonal polynomials is investigated. The analytical-approximate and approximate solutions of the problem as the sum of some biorthogonal and quasi-spectral polynomials are found.

Models of mass transfer in gas transmission systems

The models of gas movement in pipelines and gas filtration processes in complex porous media are considered in entire and fractional derivatives. The method for linearization of equations, which are included in the mathematical model of mass transfer, is suggested as well as an iterative scheme for solving initial systems of nonlinear differential equations is constructed. The finite-element model of the problem with the use of the Petrov-Galerkin method and Grunwald-Letnikov scheme concerning derivatives of the fractional order are implemented.