lower critical solution temperature

Surface Modification in Aqueous Dispersions with Thermo-Responsive Poly(methylvinylether) Copolymers in Combination with Ultrasonic Treatment

The process of surface modification of hydrophobic organic pigments (copper phthalocyanine (CuPc) and carbon black) as well as a hydrophilic inorganic pigment (titanium dioxide) in aqueous dispersions by employing tailor-made thermo-responsive copolymers, and the colloidal stability have been studied. The pigment surface modification is achieved by conventional adsorption and by (thermo)precipitation of amphiphilic methyl vinyl ether (MVE) containing polyvinylether block and PMVE graft copolymers with poly(ethylene oxide) side chains exhibiting a lower critical solution temperature (LCST).

Nanoscale Effects in Temperature Induced Polymer Coatings

In this paper the results of recent studies on the application of lower critical solution temperature (LCST) phenomena of polymer solutions to the surface modification of flat and spherical substrates are reported. It has been found that controlled polymer deposition can be achieved at temperatures exceeding LCST. The obtained polymer coating exhibits a peculiar surface morphology and, if particles are introduced, can be highly effective in pigment dispersions stabilizing.