метрики якості класифікації

Комп’ютерне моделювання логістичної регресії для бінарної класифікації

У цій статті розглянуто практичні аспекти застосування логістичної регресії для бінарної класифікації даних. Логістична регресія визначає імовірність належності об’єкта до одного із двох класів. Ця імовірність обчислюється за допомогою сигмоїдної функції, аргументом якої є лінійна згортка вектора ознак об’єкта із ваговими коефіцієнтами, отриманими у ході мінімізації логарифмічної функції втрат. Прогнозовані мітки класу визначаються порівнянням обчисленої імовірності із заданим пороговим значенням.

Математична модель логістичної регресії для бінарної класифікації. Ч. 2. Процеси підготовки, навчання і тестування даних

У цій статті розглянуто теоретичні аспекти логістичної регресії для бінарної класифікації даних, включаючи процеси підготовки даних, навчання, тестування та показники оцінювання моделей.

Сформульовано вимоги до вхідних наборів даних, описано способи кодування категоріальних даних, визначено та обґрунтовано способи масштабування вхідних ознак.