near-surface non-homogeneity

To modeling admixtures influence on the size effects in a thin film

There are formulated the key systems of equation describing  structurally nonhomogeneous two-component solid solutions.  As the key functions there are chosen the stress tensor (displacement vector) and the densities of admixture and skeleton.  On this basis the near-surface nonhomogeneity densities of skeleton and admixture, stresses and  size effects of surface tension and intensity of the power load causing the thin film fracture are studied.  The attention is paid to the admixture influence on size effects.

Modeling local non-homogeneity in electroconductive non-ferromagnetic thermoelastic solid

We consider the key systems describing steady state of a locally inhomogeneous electroconductive non-ferromagnetic solid within framework of the local gradient approach in thermomechanics. An arbitrarily chosen subdomain of the solid is regarded as a thermodynamically open system that can exchange by mass with  environment. It is assumed that this exchange occurs suddenly at the initial time when the body structure is instantly set. The mass sources are introduced into the model to conform the actual and reference body states.

Mathematical modeling of near-surface non-homogeneity in nanoelements

This paper is a further development of the local gradient approach in thermomechanics. The presented model allows us to study the stress-strain state of nanoelements under one-continuum approach. Thermoelastic body is considered as an open thermodynamical system where the mass fluxes and sources are connected with sudden occurrence of the structure of material and real surface of the body at the moment of body formation. The complete system of equations includes mass balance equation generalized for locally heterogeneous systems.