нейронна мережа

Інтелектуальна система передбачення фейкових новин на основі технологій NLP та машинного навчання

У статті описано дослідження ідентифікації фейкових новин на основі опрацювання природної мови, аналізу великих даних і технології глибокого навчання. Розроблена система автоматично перевіряє новини на наявність ознак фейкових новин, таких як використання маніпулятивної мови, неперевірених джерел і недостовірної інформації. Візуалізація даних реалізована на основі дружнього інтерфейсу користувача, який відображає результати аналізу новин у зручному та зрозумілому форматі.

ГЕНЕРАЦІЯ ТА РОЗПІЗНАВАННЯ ФРАКТАЛЬНИХ КАМУФЛЯЖНИХ СТРУКТУР З ВИКОРИСТАННЯМ НЕЙРОННИХ МЕРЕЖ

В роботі розглядається метод генерації фрактальниї камуфляжних структур (сіток) за допомогою рандомізованої системи ітераційних функцій. В даний метод закладена можливість змінювати основу структури (вид сітки), це в свою чергу дасть можливість визначати параметри, за допомогою яких даний об’єкт можна буде індентифікувати, як фрактальну камуфляжну сітку. В математичному описі удосконаленої РСІФ введено параметри діапазон кольорів (набір кольорів), який дозволить підлаштовувати фрактальну структуру до кольорів ланшафту, де буде застосовуватися камуфляжна сітка.

Оцінка точності класифікації за допомогою нейромережі прямого поширення динамічних об’єктів

У даній роботі на основі мультишарової нейронної мережі досліджено вплив кількості прихованих шарів, числа нейронів у них та типів активаційних функцій на точність класифікації снарядів шістьох типів (А – (а-боєприпаси); А/М – (а/м-боєприпаси; А/Р – (бронебійні); А/РС – (бронебійно-набивні); М – (m-боєприпаси); Р – (бронебійні боєприпаси)), яка оцінюється матрицею помилок.

Система розпізнаванням об’єктів на основі моделі Yolo

Побудовано систему розпізнавання об’єктів, знятих у режимі реального часу на відеокамеру в зашумленому та змінному щодо навколишніх умов середовищі. Досліджено методику наповнення бази даних для мобільних військових об’єктів. Для розпізнавання об’єктів використано нейромережу YOLO v8, яка дає змогу відстежувати рухомі та ідентифікувати об’єкти, які потрапляють на відео із відеокамери. Ця нейромережа дає змогу відстежувати об’єкти зі зміною масштабу, під час руху з перешкодами.

ANN-Based Short-Term Wastewater Flow Prediction for Better WWTP Control

This paper presents an approach to predict the amount of the wastewater which enters wastewater treatment plant, using artificial neural network. The method presented can be used to give short-term predictions of wastewater inflow-rate. The described neural network model uses a very tiny set of data commonly collected by WWTP control systems.