Випадковий ліс

Система виявлення аномалій та моніторингу трафіку в комп’ютерних мережах

Розглянуто проблему виявлення аномалій у мережному трафіку та запропоновано комплексне рішення для підвищення рівня кібербезпеки організацій різного масштабу. Здійснено порівняльний аналіз наявних систем моніторингу та виявлення аномалій, включаючи як відкриті рішення, так і комерційні продукти.

Прогнозування напрямів розвитку ІТ-ринку з використанням методів машинного навчання

У статті досліджено підходи до прогнозування напрямів розвитку ІТ-ринку на основі методів машинного навчання. Актуальність роботи зумовлена високою динамікою цифрової економіки, швидкими змінами технологічних трендів та потребою у науково обґрунтованих інструментах аналізу ІТ-сфери. Метою дослідження є побудова моделі прогнозування, здатної виявляти закономірності у соціально-економічних, технологічних та поведінкових показниках, що визначають стан і перспективи розвитку ІТ-ринку.

Розроблення методу дослідження кіберзлочинів за типом вірусів-вимагачів з використанням моделей штучного інтелекту в системі менеджменту інформаційної безпеки критичної інфраструктури

У цій статті автори зосередили увагу на аналізі можливостей застосування моделей штучного інтелекту для ефективного виявлення та аналізу кіберзлочинів. Розроблено та описано комплексний метод із використанням алгоритмів штучного інтелекту, таких як Випадковий ліс та Ізоляційний ліс, для виявлення програм-вимагачів, які є однією з основних загроз для систем управління інформаційною безпекою (ISMS) у сфері критичної інфраструктури.

Дослідження алгоритмів машинного навчання для побудови математичних моделей задач класифікації мультимодальних даних

В даний час алгоритми машинного навчання (ML) все більше інтегруються у повсякденне життя. Можна навести безліч сфер сучасного життя, де вже застосовуються методи класифікації. Досліджуються методи, які враховують попередні передбачення та помилки, які обчислюються в результаті інтегрування даних задля отримання прогнозів, для отримання результату класифікації. Проведено загальний огляд методів класифікації. Здійснено експерименти над алгоритмами машинного навчання для мультимодальних даних.