Аналітичне моделювання динамічної дискретної системи управління робочими завданнями в оперативній поліграфії

2025;
: cc. 26 - 37
Автори:
1
Національний університет «Львівська політехніка», Інститут поліграфії та медійних технологій

Розглянуто проблематику підвищення ефективності виробничих процесів оперативної поліграфії шляхом оптимізації систем управління робочими завданнями, що функціонують в умовах варіативного попиту, технологічної неоднорідності та високої залежності від перманентного переналаштування виробничих маршрутів. Наголошено, що висвітлені у публікаціях відкритого доступу напрацювання у напрямку проєктування індустріальних інфраструктур формують підґрунтя для розроблення адаптивних систем підтримки малого і середнього виробництва, здатних забезпечувати прогнозування та аналітичну оцінку виробничих процесів, не повною мірою охоплюють специфічні вимоги оперативної поліграфії, де часові обмеження, різнорідність замовлень і значна асинхронність операцій формують унікальні умови функціонування та створюють потребу синхронізації потоків даних між модулями роботи з замовниками, препрес­підготовки, автоматичного конфігурування технологічних маршрутів і виконавчих виробничих підсистем. Обґрунтовано застосування концепцій дискретно­подієвого моделювання для опису поведінки виробничого середовища у вигляді послідовностей подій та переходів між станами, а також використання апарату стохастичних мереж Петрі для формального подання конкурентних, розподілених, синхронізованих і ресурсообмежених процесів, характерних для оперативної поліграфії. На основі побудованої матриці станів і переходів робочих завдань виконано проєктування аналітичної моделі, що охоплює структурування потоків даних, механізми пріоритезаціїробочихзавдань, сформульованіуматрицікритеріїадаптаціїмаршрутів виконання замовлень та поведінку підсистеми прийняття рішень у режимі реа­льного часу. Показано, що застосування такої моделі створює підґрунтя для побудови прогнозних сценаріїв, підтримки керованості виробничого контуру та підвищення стабільності обслуговування різнорідних замовлень з розширенням цифрових технологій оперативної поліграфії.

  1. Neroda, T. (2019). Designing of multilevel system the distributed resources administration in polygraphically oriented network infrastructure. Computer Technologies of Printing, 42, 64–72. https://doi.org/10.32403/2411-9210-2019-2-42-64-72 [in English].
  2. Barrera-Diaz, C. A., Nourmohammdi, A., Smedberg, H., et al. (2023). An enhanced simulation- based multi-objective optimization approach with knowledge discovery for reconfigurable manufacturing systems. Mathematics, 11(6), 1527. https://doi.org/10.3390/math11061527 [in English].
  3. Elbasheer, M., Longo, F., Mirabelli, G., & Solina, V. (2024). Flexible Symbiosis for Simulation Optimization in Production Scheduling: A Design Strategy for Adaptive Decision Support in Industry 5.0. Journal of Manufacturing and Materials Processing, 8(6), 275. https://doi. org/10.3390/jmmp8060275 [in English].
  4. Mohanavelu, T., Krishnaswamy, R., Mannepu, V. R., et al. (2025). Dynamic layout optimi- sation through simulation: enhancing machine utilisation for fluctuating demand. The In- ternational Journal of Advanced Manufacturing Technology, 138, 983–998. https://doi.org/ 10.1007/s00170-025-15554-3 [in English].
  5. Smagowicz, J., Szwed, C., & Berlec, T. (2024). An Assortment–Quantity Optimization Problem in Printing Industry Using Simulation Modelling. Sustainability, 16(4), 1693. https:// doi.org/10.3390/su16041693 [in English].
  6. Ghasemi, A., Farajzadeh, F., & Heavey, C. (2024). Simulation optimization applied to pro- duction scheduling in the era of industry 4.0: A review and future roadmap. Journal of In- dustrial Information Integration, 39, 100599. https://doi.org/10.1016/j.jii.2024.100599 [in English].
  7. Ghaedy-Heidary, E., Nejati, E., Ghasemi, A., & Torabi, S. A. (2024). A simulation optimi- zation framework to solve Stochastic Flexible Job-Shop Scheduling Problems—Case: Se- miconductor manufacturing. Computers & Operations Research, 163, 106508. https://doi. org/10.1016/j.cor.2023.106508 [in English].
  8. Derlini, D., Annisa, S., & Lubis, Z. (2025, July 23–24). Optimizing Production Scheduling in Smart Manufacturing Systems Using Hybrid Simulation-Based Multi-Objective Optimization. In Engineering for Sustainable Future: Innovation in Renewable Energy, Green Technology, and Circular Economy (pp. 105–108). https://doi.org/10.30743/icst [in English].
  9. Fu, B., Bi, M., Umeda, Sh., et al. (2025). Digital Twin-Based Smart Manufacturing: Dynamic Line Reconfiguration for Disturbance Handling. IEEE Transactions on Automation Science and Engineering, 22, 14892–14905. https://doi.org/10.1109/TASE.2025.3563320 [in Eng- lish].
  10. Gamdha, D., Saurabh, K., Ganapathysubramanian, B., & Krishnamurthy, A. (2025). High- Resolution Thermal Simulation Framework for Extrusion-based Additive Manufacturing of Complex Geometries. Finite Elements in Analysis and Design, 251, 104410. https://doi.org/ 10.1016/j.finel.2025.104410 [in English].
  11. Moreno-Lumbreras, D., Gonzalez-Barahona, J. M., & Robles, G. (2023). BabiaXR: Faci- litating experiments about XR data visualization. SoftwareX, 24, 101587. https://doi.org/ 10.1016/j.softx.2023.101587 [in English].
  12. Neroda, T. (2025). Methodology for adapting successful decision algorithm in modeling optimal strategy for publishing and printing enterprise. In O. H. Cherep & Yu. O. Ohrenych (Eds.), Artificial Intelligence and Digital Technologies in the Transformation of Ukraine’s Economy During the War and Post-War Recovery: collective monograph (pp. 171–215). Baltija Publishing. https://doi.org/10.30525/978-9934-26-584-6 [in English].