AUTONOMOUS SOLAR ELECTRICAL PLANT FOR ACAB BUILDING

Solar energy refers to renewable energy sources and has significant potential for use. Solar energy is used to generate heat or electric energy. Electricity generation by solar power plants is practiced around the world. Solar power plants can be used as additional power supplies that work in conjunction with external power supply networks or completely autonomous. For the rational use of payments by residents for improving the living conditions of dwelling houses and adjoining territory, facilitate the acquisition of high-quality communal services an associations of co-owners of apartment buildings (ACAB) are created in Ukraine. Owners of ACAB carry out various thermorenovation measures to improve the energy performance of the buildings. The availability of the State Economic Program for Energy Efficiency and the State Budget Special Fund for the implementation of this program allow ACAB to obtain credit funds for the implementation of energy saving technologies. To attract credit, they need to know the cost of energy-saving measures. In this article, the calculation of the site area and the estimated cost of the autonomous solar power plant in the cities of Lviv, Kiev, Kharkiv and Odessa for needs of different systems are presented. It is established that the site area of the autonomous solar power plant for providing the maximum energy consumption in the specified cities is not significantly different, and on average it is 2 hectares, and its cost is more than 1 million USD. Since such free area in densely populated cities is absent, then a solar power plant should be used to cover the needs of only electricity supply systems or used as a reserve power supply. When a solar power plant is used for the needs of the electricity supply system, the site area is reduced by 10 times.

1. Sergienko V. V. (2014) Pravove rehuliuvannia diialnosti OSBB pry nadanni zhytlovo-komunalnykh posluh. [Legal regulation of activity of ACAB in the provision of housing and communal services.] Forum prava, No. 4, pp. 297–301 [In Ukrainian].

2. Voznyak O. T., Yurkevych Yu. S., Zhelykh V. M. (2003) Teoretychni peredumovy optymizatsii sukupnykh termorenovatsii pry proedeni enerhetychnoho audytu budynku. [Theoretical preconditions for the optimization of combined thermo-energetics during the energy audit of the building.] Visnyk Natsionalnoho universytetu “Lvivska politekhnika”, “Teploenerhetyka. Inzheneriia dovkillia. Avtomatyzatsiia”. No. 476, pp. 140–145. [In Ukrainian].

3. Ovsiy O. D. (2010) Udoskonalenia obliku v OSBB pry dolovomu finansuvanni robit po vidnovlenniu zhytlovoho budynku [Improvement of accounting in ACAB with share financing of works for the restoration of a residential building.] Naukovi pratsi Kirovohradskoho natsionalnoho tekhnichnoho universytetu. Ekonomichni nauky, Issue 18, p.1, pp.170–176 [In Ukrainian].

4. Zhelykh V. M., Voznyak O. T., Yurkevych Yu. S. (2009) Netradytsiini dzherela enerhii [Unconventional energy sources.] Lviv: Publishing House of the Lviv Polytechnic National University. 83 p [In Ukrainian].

5. Pona O. M., Voznyak O. T. (2014) Efektyvnist heliopokrivli v hravitatsiinii systemi teplopostachannia [Efficiency of gelio roof in the gravitational system of heat supply.] Stroitelstvo. Materialovedeniye. Mashinostroeniye. Seriya: Energetika. ekologiya. kompyuternye tekhnologii v stroitelstve. Vol.76. pp. 231–235 [In Ukrainian].

6. Ali Najah Al-Shamani, Mohd Yusof Hj Othman, Sohif Mat, M. H. Ruslan, Azher M. Abed, K. Sopian (2015) Design & Sizing of Stand-alone Solar Power Systems A house Iraq. Recent Advances in Renewable Energy Sources. pp.145–150.

7. Makarov A. V (2005) Novi rozrobky v napivprovidnykovii soniachnii enerhetytsi yak perspektyvna oblast innovatsiinoho biznesu. [New developments in semiconductor solar energy as a promising area of innovation business.] Nauka ta innovatsii. Vol.1, No. 6, pp.69–79 [In Ukrainian].

8. Vinnikov A. V., Denisenko E. A., Dolbenko D. V. (2015) K voprosu vybora solnechnoy fotoelektricheskoy stantsii. [About the choice of solar photovoltaic station.] Nauchnyy zhurnal KubGAU, № 108 (04), pp.1–11. [In Russian].

9. Khokhryakova A. A., Surkov A. A. (2014) Primeneniye solnechnykh elektrostantsiy v energosberezhenii zdaniy. [Application of solar power plants in energy saving of buildings.] Vestnik PNIPU. Prikladnaya ekologiya. Urbanistika. No. 4, pp.71–83 [In Russian].

10. Okhotkin G. P. (2013) Metodika rascheta moshchnosti solnechnykh elektrostantsiy. [Method for calculating the power of solar power stations.] Vestnik Chuvashskogo universiteta No. 3, pp.222–230 [In Russian].

11. Kazimirov O. O., Vlasov K. V., Kurtov A. I., Potichensky A. I. (2017) Doslidzhennia mozhlyvostei vykorystannia soniachnoi enerhii dlia avtonomnoho zhyvlennia obiektu. [Investigation of the possibilities of using solar energy for autonomous power supply of the object.] Systemy obrobky informatsii, Issue 1 (147), pp. 58–61 [In Ukrainian].

12. Litovchenko V. G., Melnik V. P., Romanyuk B. M., Dvernikov B. F., Korkishko R. M., Kostylov V. P., Musayev S. M., Popov V. G., Cherenko V. B. (2015) Mobilni soniachni elektrostantsii dlia vykorystannia v polovykh umovakh. [Mobile solar power plants for use in field conditions.] Visnyk NAN Ukrainy. No. 11, pp. 59–66 [In Ukrainian].