Functionally gradient isotropic cylindrical shell locally heated by heat sources

The stress-strain state of a functionally gradient isotropic thin circular cylindrical shell under local heating by a flat heat source has been investigated.  For this purpose, a mathematical model of the classical theory of inhomogeneous shells has been used.  A two-dimensional heat equation is derived under the condition of a linear dependence of the temperature on the transverse coordinate.  The solutions of the non-stationary heat conduction problem and the quasi-static thermoelasticity problem for a finite closed cylindrical pivotally supported shell have been obtained by means of methods of Fourier and Laplace integral transforms.  Numerical results are presented for the metal-ceramic composite used to restore the integrity of human tooth crowns.

  1. Zhydyk U.  Mathematical modeling the thermomechanical behaviour of nonhomogeneous elastic anisotropic shells.  Visnyk of the Lviv university. Ser. Mech-math. 57, 72--75 (2000), (in Ukrainian).
  2. Zhydyk U., Nykolyshyn M., Flyachok V.  Analysis of thermoelastic state of laminated anisotropic cylindrical shell under localized head sourced.  Visnyk of the Lviv university. Ser. Mech-math. 73, 71--76 (2010), (in Ukrainian).
  3. Kushnir R. M., Nykolyshyn M. M., Zhydyk U. V., Flyachok V. M.  Modeling of thermoelastic processes in heterogeneous anisotropic shells with initial deformations.   J. Mathematical Sciences. 178 (5), 512--530 (2011).
  4. Ayoubi P., Alibeigloo A.  Three-dimensional transient analysis of FGM cylindrical shell subjected to thermal and mechanical loading.  J. Thermal Stresses. 40 (9), 1166--1183 (2017).
  5. Tokovyy Y. V., Chyzh A. I., Ma C. C.  Thermal analysis of radially-inhomogeneous hollow cylinders vs cylindrical shells.  Proceedings of the sixth ACMFMS. Taiwan. P. 216--219 (2018).
  6. Bahtui A., Eslami M. R.  Coupled thermoelasticity of functionally graded cylindrical shells.  Mechanics Research Communications. 34 (1), 1--18 (2007).
  7. Li D., Deng Z., Chen G., Ma T.  Mechanical and thermal buckling  of exponentially graded sandwich plates.  J. Thermal Stresses. 41 (7), 883--902 (2018).
  8. Punera D., Kant T., Desai Y. M.  Thermoelastic analysis of laminated and functionally graded sandwich cylindrical shells with two refined higher order models.  J. Thermal Stresses. 41 (1), 54--79 (2018).
  9. Pandey S., Pradyumna S.  Transient stress analysis of sandwich plate and shell panels with functionally graded material core under thermal shock.  J. Thermal Stresses.  41 (5),  543--567 (2018).
  10. Birman V. L., Byrd W.  Modeling and analysis of functionally graded materials and structures.  Appl. Mech. Rev. 60, 195--216 (2007).
  11. Thai H. T., Kim S. E.  A review of theories for the modeling and analysis of functionally graded plates and shells.  Compos. Struct. 128, 70--86 (2015).
  12. Podstrigach Ya. S., Shvets R. N.  Thermoelasticity of Thin Shells.  Kyiv,  Naukova Dumka (1978), (in Russian).
Mathematical Modeling and Computing, Vol. 6, No. 2, pp. 367–373 (2019)