Asymptotic solutions of soliton type of the Korteweg–de Vries equation with variable coefficients and singular perturbation

The paper deals with the singularly perturbed Korteweg–de Vries equation with variable coefficients.  The equation describes wave processes in various inhomogeneous media with variable characteristics and small dispersion.  We consider the general algorithm of construction of asymptotic solutions of soliton type to the equation and present its approximate solutions of this type.  We analyze properties of the constructed asymptotic solution depending on a small parameter.  The results are demonstrated by the examples of the studied equation.  We show that for an adequate description of qualitative properties of soliton type solutions to the singularly perturbed KdV equation with variable coefficients it is necessary to construct at least the first asymptotic approximation, that is, expansion containing both the main and the first term.

  1. Korteweg D. J., de Vries G.  On the change in form of long waves advancing in a rectangular canal and a new type of long stationary waves.  Philos. Mag. 39, 422--443 (1895).
  2. Russell J. Scott.  Report on waves.  Reports Fourteenth Meeting of the British Association. 311--390 (1844).
  3. Zabusky N. J., Kruskal M. D.  Interaction of solitons in a collisionless plasma and recurrence of initial states.  Phys. Rev. Lett. 15 (6), 240--243 (1965).
  4. Kadomtsev B. B.  Cooperative effects in plasmas.  In Book: Reviews of plasma physics.  Kluwer Academic, Springer. 22, 1--226 (2001).
  5. Toda M.  Theory of nonlinear lattices.  Solid State Sciences. Vol. 20.  New York, Springer--Verlag (1981).
  6. Davydov A. S.  Solitons in biology.  In book: Modern Problems in Condensed Matter Sciences. 17, 1--51 (1986).
  7. Brizhik L., Eremko A., Piette B., Zakrzewski W.  Solitons in $\alpha$-helical proteins.  Phys. Rev. E. 70 (3), 031914 (2004).
  8. Newell M. C.  Solitons in mathematics and physics. SIAM (1985).
  9. Maslov V. P., Omel'yanov G. A.  Asymptotic soliton-form solutions of equations with small dispersion.  Russian Mathematical Surveys. 36 (3), 73--149 (1981).
  10. Maslov V. P., Omel'yanov G. A.  Geometric asymptotics for PDE. I. American Math. Society (2001).
  11. Miura R. M., Kruskal M.  Application of non-linear WKB-method to the KdV equation.  SIAM J. Appl. Math.  26 (2), 376--395 (1974).
  12. Samoilenko V. Hr., Samoilenko Yu. I.  Asymptotic expansions for one-phase soliton-type solutions of the Korteweg--de Vries equation with variable coefficients.  Ukr. Math. Journ.  57 (1), 132--148 (2005).
  13. Samoilenko V. Hr., Samoilenko Yu. I.  Asymptotic two-phase soliton-like solutions of the singularly perturbed Korteweg--de Vries equation with variable coefficients.  Ukr. Math. Journ.  60 (3), 449--461 (2008).
  14. Samoilenko V. Hr., Samoilenko Yu. I.  Asymptotic $m$-phase soliton-type solutions of a singularly perturbed Korteweg--de Vries equation with variable coefficients.  Ukr. Math. Journ.  64 (7), 1109--1127 (2012).
  15. Samoilenko Yu. I.  Isnuvannia rozviazku zadachi Koshi dlia liniinoho rivniannia z chastynnymy pokhidnymy pershoho poriadku zi zminnymy koefitsiientamy u prostori shvydko spadnykh funktsii.  Bukovinian Math. Journ. 1 (1--2), 120--124 (2013), (in Ukrainian).
  16. Golovatiy Yu. D., Kyrylych V. M., Lavrenyuk S. P.  Dyferentsialni rivniannia. Lviv, Ivan Franko National University of Lviv (2011), (in Ukrainian).
  17. Kaplun Yu. I., Samoilenko V. Hr.  On extendability of solutions of differential equations to a singular set.  Ukr. Math. Journ.  55 (3), 450-455 (2003).