Giant magnetoresistance effect in InSe<β-CD<FeSO4>> clathrate

The InSe$\langle\beta$-CD$\langle$FeSO$_4\rangle\rangle$ clathrate with hierarchical architecture reveals a giant magnetoresistive effect and extraordinary (oscillating) behavior of the current-voltage characteristics in the magnetic field in the direction perpendicular to nanolayers.  A new technological approach  for the synthesis of multilayered nanostructure is proposed.  It allows attaining a fourfold degree of expansion of the initial InSe semiconductor matrix in which the cavitate of $\beta$-cyclodextrin ($\beta$-CD) and iron sulfate served as a guest content.  This makes it possible to develop a theoretical model to describe the interlayer magnetoconductivity in such extremely anisotropic 2D layered compounds.  Graphic dependencies of oscillating magnetoconductivity are analysed  for different values of quantizing magnetic field in a layered structure whose interlayer transfer integral can be controlled artificially.

  1. Baibich M. N., Broto J. M.,  Fert A., Nguyen Van Dau, Petroff F., Etienne P., Creuzet G., Friederich A., Chazelas J.  Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Physical Review Letters.  61 (21),  2472–2475 (1988).
  2. Binasch G., Grunberg P., Saurenbach  F., Zinn W.  Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Physical Review B.  39 (7),  4828–4830 (1989).
  3. Prinz G.  Magnetoelectronics.  Science.  282 (5394), 1660–1663 (1998).
  4. Wolf S. A., Awschalom D. D., Buhrman R. A., Daughton J. M., von Molnár S., Roukes M. L., Chtchelkanova A. Y., Treger D. M.  Spintronics: a spin-based electronics vision for the future.  Science.  294 (5546), 1488–1495 (2001).
  5. Ross C. A.  Patterned magnetic recording media.  Annual Review of Materials Research.  31, 203–235 (2001).
  6. Daughton J. M.,  Pohm A. V.,  Fayfield R. T., Smith C. H.  Applications of spin dependent transport materials.  Journal of Physics D: Applied Physics.  32 (22), R169–R177 (1999).
  7. Ivashchyshyn F. O., Grygorchak I. I., Klapchuk M. I.  Impedance anisotropy and quantum photocapacity of bio/inorganic clathrates InSe$\langle$histidine$\rangle$ and GaSe$\langle$histidine$\rangle$. Nanosystems, Nanomaterials, nanotechnologies. 13 (3), 403–414 (2015).
  8. Grygorchak I. I., Hryhorchak O. I., Ivashchyshyn F. O.  Modification of the properties of InSe$\langle \beta$-CD$\langle$FeSO$_4\rangle\rangle$ clathrate/cavitate complexes with hierarchical architecture at their synthesis in crossed electric and light-wave fields.  Ukrainian Journal of Physics. 62 (7), 625–632 (2017).
  9. Kostrobij P., Grygorchak I.,  Ivashchyshyn F., Markovych B., Viznovych O., Tokarchuk M.  Generalized Electrodiffusion Equation with Fractality of Space-Time: Experiment and Theory.  J. Phys. Chem. A. 122 (16),  4099–4110 (2018).
  10. Lehn J. M.  Supramolecular Chemistry: Concepts and Perspectives.  Berlin, Wiley-VCH Verlag GmbH  (1995).
  11. Grygorchak I. I. at al.  Fizychni procesy u supramolekulyarnyx ansamblyax ta yix praktychne zastosuvannya: monohrafiya.  Chernivci, Cherniv. nac. universytet (2016), (in Ukrainian).
  12. Steed J., Atwood J.  Supramolecular Chemistry.  John Wiley and Sons (2009).
  13. Savitskii P. I., Mintyanskii I. V., Kovalyuk Z. D.  Anizotropiya elektroprovodnosti v monoselenide indiya.  Neorganicheskije materialy.  32 (4), 405–409 (1996), (in Russian).
  14. Savitskii P. I., Mintyanskii I. V., Kovalyuk Z. D.  Annealing effect on conductivity anisotropy in indium selenide single crystals.  Physica Status Solidi (a).   155 (2), 451–460 (1996).
  15. Savitskii P. I., Kovalyuk Z. D., Mintyanskii I. V.  Termostimulirovannoe izmenenie sostoyaniya defektov v monoselenide indiya.  Neorganicheskije materialy.  33 (9),  1062–1066 (1997), (in Russian).
  16. Savitskii P. I., Kovalyuk Z. D., Mintyanskii I. V.  Space-charge region scattering in indium monoselenide.  Physica Status Solidi (a).  180 (2),  523–531 (2000).
  17. Mushinskii V. P., Karaman M. I.  Opticheskie svojstva hal'kogenidov galliya i indiya.  Kishinev, MUSSR: Shtiinca  (1973), (in Russian).
  18. Landot-Bornstein.  Numerical data and functional relationships in science and technology.  Ed. A. Mashke. Berlin, Springer-Verlag  (1999).
  19. Friend R. H., Yoffe A. D.  Electronic properties of intercalation complexes of the transition metal dichalcogenides.  Advances in Physics. 36 (1),  1–94 (1987).
  20. Grygorchak I., Ivashchyshyn F., Stakhira P.,  Reghu R. R., Cherpak V.  Intercalated nanostructure consisting of inorganic receptor and organic ambipolar semiconductor.  Journal of Nanoelectronics and Optoelectronics. 8 (3),  292–296 (2013).
  21. Stojnov Z. B., Grafov B. M., Savova-Stojnova B., Elkin V. V.  Elektrohimicheskij impedans.  Moskva, Nauka (1991), (in Russian).
  22. Barsoukov E., Macdonald J. R.  Impedance spectroscopy. Theory, experiment and application.  Wiley Interscience (2005).
  23. Stasyuk I. V., Velychko O. V.  The study of electronic states in highly anisotropic layered structures with stage ordering.  Journal of Physical Studies. 18 (2/3), 2002-1–2002-9 (2014).
  24. Stasyuk I. V., Velychko O. V.  Electron spectrum of intercalated stage ordered layered structures: periodic Anderson model approach.  Mathematical Modeling and Computing. 2 (2), 191–203 (2015).
  25. Ziman J. M.  Principles of the Theory of Solids. Cambridge, Cambridge University Press (1972).
  26. Abrikosov A. A.  Fundamentals of the Theory of Metals.  Amsterdam, New York, North-Holland  (1988).
  27. Shoenberg D.  Magnetic Oscillations in Metals.  Cambridge, Cambridge University Press (1984).
  28. Grigoriev P.  The influence of the chemical potential oscillations on the de Haas-van Alphen effect in quasi-two-dimensional compounds.  Journal of Experimental and Theoretical Physics. 92,  1090–1094 (2001).
  29. Champel T., Mineev V.  Magnetic quantum oscillations of the longitudinal conductivity $\sigma_{zz}$ in quasi two-dimensional Metals.  Physical Review B.  66 (19), 195111 (2003).
  30. Abrikosov A. A., Gorkov L. P., Dzyaloshinski I. E.  Methods of Quantum Field Theory in Stastistical Physics. New Jersey, Prentice Hall  (1964).
Mathematical Modeling and Computing, Vol. 7, No. 2, pp. 322–333 (2020)